James McCool
Refactor stacking logic in app.py to streamline team assignment calculations for player lineups. This update removes legacy stacking code and optimizes the application of team data, enhancing performance and maintainability.
8d876b3
import streamlit as st
st.set_page_config(layout="wide")
import pandas as pd
from rapidfuzz import process
import random
from collections import Counter
import io
## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.load_dk_fd_file import load_dk_fd_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches
from global_func.trim_portfolio import trim_portfolio
from global_func.get_portfolio_names import get_portfolio_names
from global_func.small_field_preset import small_field_preset
from global_func.large_field_preset import large_field_preset
from global_func.hedging_preset import hedging_preset
from global_func.volatility_preset import volatility_preset
from global_func.reduce_volatility_preset import reduce_volatility_preset
from global_func.analyze_player_combos import analyze_player_combos
from global_func.stratification_function import stratification_function
from global_func.exposure_spread import exposure_spread
from global_func.reassess_edge import reassess_edge
from global_func.recalc_diversity import recalc_diversity
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Lineup Edge_Raw': '{:.2%}', 'Win%': '{:.2%}'}
stacking_sports = ['MLB', 'NHL', 'NFL', 'LOL', 'NCAAF']
stack_column_dict = {
'Draftkings': {
'Classic': {
'MLB': ['C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'],
'NHL': ['C', 'W', 'D'],
'NFL': ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX'],
'LOL': ['TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
'NCAAF': ['QB', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
},
'Showdown': {
'MLB': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NHL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NFL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'LOL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NCAAF': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
},
},
'Fanduel': {
'Classic': {
'MLB': ['C/1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'],
'NHL': ['C', 'W', 'D'],
'NFL': ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX'],
'LOL': ['TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
'NCAAF': ['QB', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
},
'Showdown': {
'MLB': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NHL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NFL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'LOL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NCAAF': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
},
},
}
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
st.markdown("""
<style>
/* Tab styling */
.stElementContainer [data-baseweb="button-group"] {
gap: 2.000rem;
padding: 4px;
}
.stElementContainer [kind="segmented_control"] {
height: 2.000rem;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 20px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stElementContainer [kind="segmented_controlActive"] {
height: 3.000rem;
background-color: #DAA520;
border: 3px solid #FFD700;
border-radius: 10px;
color: black;
}
.stElementContainer [kind="segmented_control"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
</style>""", unsafe_allow_html=True)
# Memory optimization helper functions
def chunk_name_matching(portfolio_names, csv_names, chunk_size=1000):
"""Process name matching in chunks to reduce memory usage"""
portfolio_match_dict = {}
unmatched_names = []
for i in range(0, len(portfolio_names), chunk_size):
chunk = portfolio_names[i:i+chunk_size]
for portfolio_name in chunk:
match = process.extractOne(
portfolio_name,
csv_names,
score_cutoff=90
)
if match:
portfolio_match_dict[portfolio_name] = match[0]
if match[1] < 100:
st.write(f"{portfolio_name} matched from portfolio to site csv {match[0]} with a score of {match[1]}%")
else:
portfolio_match_dict[portfolio_name] = portfolio_name
unmatched_names.append(portfolio_name)
return portfolio_match_dict, unmatched_names
def optimize_dataframe_dtypes(df):
"""Optimize DataFrame data types for memory efficiency"""
# For now, disable categorical conversion entirely to avoid issues with exposure_spread and other operations
# This maintains compatibility while still providing other memory optimizations
# Future enhancement: implement smarter categorical handling that preserves mutability
# Only optimize numeric columns to more efficient dtypes
for col in df.columns:
if df[col].dtype == 'float64':
# Convert float64 to float32 if possible without significant precision loss
try:
if df[col].max() < 3.4e+38 and df[col].min() > -3.4e+38: # float32 range
df[col] = df[col].astype('float32')
except:
pass
elif df[col].dtype == 'int64':
# Convert int64 to smaller int types if possible
try:
if df[col].max() <= 32767 and df[col].min() >= -32768:
df[col] = df[col].astype('int16')
elif df[col].max() <= 2147483647 and df[col].min() >= -2147483648:
df[col] = df[col].astype('int32')
except:
pass
return df
def create_memory_efficient_mappings(projections_df, site_var, type_var, sport_var):
"""Create mappings with optimized data types"""
# Optimize projections data types first
projections_df = projections_df.copy()
# Convert to more efficient data types
if 'position' in projections_df.columns:
projections_df['position'] = projections_df['position'].astype('category')
if 'team' in projections_df.columns:
projections_df['team'] = projections_df['team'].astype('category')
if 'salary' in projections_df.columns:
projections_df['salary'] = projections_df['salary'].astype('int32')
if 'median' in projections_df.columns:
projections_df['median'] = projections_df['median'].astype('float32')
if 'ownership' in projections_df.columns:
projections_df['ownership'] = projections_df['ownership'].astype('float32')
if 'captain ownership' in projections_df.columns:
projections_df['captain ownership'] = projections_df['captain ownership'].astype('float32')
# Create base mappings
base_mappings = {
'pos_map': dict(zip(projections_df['player_names'], projections_df['position'])),
'team_map': dict(zip(projections_df['player_names'], projections_df['team'])),
'salary_map': dict(zip(projections_df['player_names'], projections_df['salary'])),
'proj_map': dict(zip(projections_df['player_names'], projections_df['median'])),
'own_map': dict(zip(projections_df['player_names'], projections_df['ownership'])),
'own_percent_rank': dict(zip(projections_df['player_names'], projections_df['ownership'].rank(pct=True).astype('float32')))
}
# Add site/type specific mappings
if site_var == 'Draftkings':
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
base_mappings.update({
'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'] * 1.5)),
'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)),
'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership']))
})
else:
base_mappings.update({
'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'])),
'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)),
'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership']))
})
elif type_var == 'Showdown':
if sport_var == 'GOLF':
base_mappings.update({
'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'])),
'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'])),
'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['ownership']))
})
else:
base_mappings.update({
'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'] * 1.5)),
'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)),
'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership']))
})
elif site_var == 'Fanduel':
base_mappings.update({
'cpt_salary_map': dict(zip(projections_df['player_names'], projections_df['salary'] * 1.5)),
'cpt_proj_map': dict(zip(projections_df['player_names'], projections_df['median'] * 1.5)),
'cpt_own_map': dict(zip(projections_df['player_names'], projections_df['captain ownership']))
})
return base_mappings
def calculate_salary_vectorized(df, player_columns, map_dict, type_var, sport_var):
"""Vectorized salary calculation to replace expensive apply operations"""
def safe_map_and_fill(series, mapping, fill_value=0):
"""Safely map values and fill NaN, handling categorical columns"""
mapped = series.map(mapping)
if hasattr(series, 'cat'):
# Handle categorical columns by converting to object first
mapped = mapped.astype('object')
return mapped.fillna(fill_value)
if type_var == 'Classic' and (sport_var == 'CS2' or sport_var == 'LOL'):
# Captain + flex calculations
cpt_salaries = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_salary_map'])
flex_salaries = sum(safe_map_and_fill(df.iloc[:, i], map_dict['salary_map']) for i in range(1, len(player_columns)))
return cpt_salaries + flex_salaries
elif type_var == 'Showdown':
if sport_var == 'GOLF':
return sum(safe_map_and_fill(df[col], map_dict['salary_map']) for col in player_columns)
else:
cpt_salaries = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_salary_map'])
flex_salaries = sum(safe_map_and_fill(df.iloc[:, i], map_dict['salary_map']) for i in range(1, len(player_columns)))
return cpt_salaries + flex_salaries
else:
# Classic non-CS2/LOL
return sum(safe_map_and_fill(df[col], map_dict['salary_map']) for col in player_columns)
def calculate_median_vectorized(df, player_columns, map_dict, type_var, sport_var):
"""Vectorized median calculation to replace expensive apply operations"""
def safe_map_and_fill(series, mapping, fill_value=0):
"""Safely map values and fill NaN, handling categorical columns"""
mapped = series.map(mapping)
if hasattr(series, 'cat'):
# Handle categorical columns by converting to object first
mapped = mapped.astype('object')
return mapped.fillna(fill_value)
if type_var == 'Classic' and (sport_var == 'CS2' or sport_var == 'LOL'):
cpt_medians = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_proj_map'])
flex_medians = sum(safe_map_and_fill(df.iloc[:, i], map_dict['proj_map']) for i in range(1, len(player_columns)))
return cpt_medians + flex_medians
elif type_var == 'Showdown':
if sport_var == 'GOLF':
return sum(safe_map_and_fill(df[col], map_dict['proj_map']) for col in player_columns)
else:
cpt_medians = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_proj_map'])
flex_medians = sum(safe_map_and_fill(df.iloc[:, i], map_dict['proj_map']) for i in range(1, len(player_columns)))
return cpt_medians + flex_medians
else:
return sum(safe_map_and_fill(df[col], map_dict['proj_map']) for col in player_columns)
def calculate_ownership_vectorized(df, player_columns, map_dict, type_var, sport_var):
"""Vectorized ownership calculation to replace expensive apply operations"""
def safe_map_and_fill(series, mapping, fill_value=0):
"""Safely map values and fill NaN, handling categorical columns"""
mapped = series.map(mapping)
if hasattr(series, 'cat'):
# Handle categorical columns by converting to object first
mapped = mapped.astype('object')
return mapped.fillna(fill_value)
if type_var == 'Classic' and (sport_var == 'CS2' or sport_var == 'LOL'):
cpt_own = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_own_map'])
flex_own = sum(safe_map_and_fill(df.iloc[:, i], map_dict['own_map']) for i in range(1, len(player_columns)))
return cpt_own + flex_own
elif type_var == 'Showdown':
if sport_var == 'GOLF':
return sum(safe_map_and_fill(df[col], map_dict['own_map']) for col in player_columns)
else:
cpt_own = safe_map_and_fill(df.iloc[:, 0], map_dict['cpt_own_map'])
flex_own = sum(safe_map_and_fill(df.iloc[:, i], map_dict['own_map']) for i in range(1, len(player_columns)))
return cpt_own + flex_own
else:
return sum(safe_map_and_fill(df[col], map_dict['own_map']) for col in player_columns)
def calculate_lineup_metrics(df, player_columns, map_dict, type_var, sport_var, projections_df=None):
"""Centralized function to calculate salary, median, and ownership efficiently"""
df = df.copy() # Work on a copy to avoid modifying original
# Ensure player columns are object type to avoid categorical issues with exposure_spread
for col in player_columns:
if df[col].dtype.name == 'category':
df[col] = df[col].astype('object')
# Vectorized calculations
df['salary'] = calculate_salary_vectorized(df[player_columns], player_columns, map_dict, type_var, sport_var)
df['median'] = calculate_median_vectorized(df[player_columns], player_columns, map_dict, type_var, sport_var)
df['Own'] = calculate_ownership_vectorized(df[player_columns], player_columns, map_dict, type_var, sport_var)
return df
def create_team_filter_mask(df, player_columns, team_map, teams_to_filter, focus_type='Overall', type_var='Classic'):
"""Create boolean mask for team filtering without creating intermediate DataFrames"""
mask = pd.Series(False, index=df.index)
if type_var == 'Showdown' and focus_type != 'Overall':
if focus_type == 'CPT':
focus_columns = [player_columns[0]] # First column only
elif focus_type == 'FLEX':
focus_columns = player_columns[1:] # All except first
else:
focus_columns = player_columns
else:
# For Classic or Overall focus, use appropriate columns
if type_var == 'Classic':
focus_columns = [col for col in player_columns if col not in ['SP1', 'SP2']] # Exclude pitchers
else:
focus_columns = player_columns
for team in teams_to_filter:
for col in focus_columns:
team_mask = df[col].map(team_map) == team
mask |= team_mask
return mask
def prepare_dataframe_for_exposure_spread(df, player_columns):
"""Ensure DataFrame is ready for exposure_spread by converting player columns to object type"""
df_prepared = df.copy()
# Convert any categorical player columns back to object type
for col in player_columns:
if col in df_prepared.columns and df_prepared[col].dtype.name == 'category':
df_prepared[col] = df_prepared[col].astype('object')
return df_prepared
def create_position_export_dict(column_name, csv_file, site_var, type_var, sport_var):
try:
# Remove any numbers from the column name to get the position
import re
position_filter = re.sub(r'\d+$', '', column_name)
# Filter CSV file by position
if 'Position' in csv_file.columns:
if type_var == 'Showdown':
filtered_df = csv_file.copy()
else:
if position_filter == 'SP':
filtered_df = csv_file[
csv_file['Roster Position'] == 'P'
]
elif position_filter == 'CPT':
filtered_df = csv_file.copy()
elif position_filter == 'FLEX' or position_filter == 'UTIL':
if sport_var == 'NFL':
filtered_df = csv_file[csv_file['Position'].isin(['RB', 'WR', 'TE'])]
elif sport_var == 'SOC':
filtered_df = csv_file[csv_file['Position'].str.contains('D|M|F', na=False, regex=True)]
elif sport_var == 'NCAAF':
filtered_df = csv_file[csv_file['Position'].str.contains('RB|WR', na=False, regex=True)]
elif sport_var == 'NHL':
filtered_df = csv_file[csv_file['Position'].str.contains('C|W|D', na=False, regex=True)]
else:
filtered_df = csv_file.copy()
elif position_filter == 'SFLEX':
filtered_df = csv_file.copy()
elif position_filter == 'C/1B':
filtered_df = csv_file[
csv_file['Position'].str.contains(['C', '1B'], na=False, regex=False)
]
else:
filtered_df = csv_file[
csv_file['Position'].str.contains(position_filter, na=False, regex=False)
]
else:
# Fallback to all players if no position column found
filtered_df = csv_file
# Create the export dictionary for this position
if site_var == 'Draftkings':
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
return dict(zip(filtered_df['Name'], filtered_df['Name + ID']))
else:
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
return dict(zip(filtered_df['Nickname'], filtered_df['Id']))
except Exception as e:
st.error(f"Error creating position export dict for {column_name}: {str(e)}")
return {}
with st.container():
col1, col2, col3, col4 = st.columns([1, 4, 4, 4])
with col1:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with col2:
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
with col3:
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'NCAAF', 'MMA', 'CS2', 'LOL', 'TENNIS', 'NASCAR', 'GOLF', 'WNBA', 'F1'])
with col4:
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
if sport_var == 'GOLF':
position_var = 'G'
team_var = 'GOLF'
elif sport_var == 'TENNIS':
position_var = 'T'
team_var = 'TENNIS'
elif sport_var == 'MMA':
position_var = 'F'
team_var = 'MMA'
elif sport_var == 'NASCAR':
position_var = 'D'
team_var = 'NASCAR'
elif sport_var == 'F1':
position_var = 'D'
team_var = 'F1'
else:
position_var = None
team_var = None
if site_var == 'Draftkings':
salary_max = 50000
elif site_var == 'Fanduel':
if type_var == 'Classic':
if sport_var == 'MLB':
salary_max = 40000
elif sport_var == 'WNBA':
salary_max = 40000
elif sport_var == 'GOLF':
salary_max = 60000
elif sport_var == 'MMA':
salary_max = 100
elif sport_var == 'NFL':
salary_max = 60000
elif sport_var == 'NASCAR':
salary_max = 50000
else:
salary_max = 60000
elif type_var == 'Showdown':
salary_max = 60000
try:
selected_tab = st.segmented_control(
"Select Tab",
options=["Data Load", "Manage Portfolio"],
selection_mode='single',
default='Data Load',
label_visibility='collapsed',
width='stretch',
key='tab_selector'
)
except:
selected_tab = st.segmented_control(
"Select Tab",
options=["Data Load", "Manage Portfolio"],
selection_mode='single',
default='Data Load',
label_visibility='collapsed',
key='tab_selector'
)
if selected_tab == 'Data Load':
# Add file uploaders to your app
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Draftkings/Fanduel CSV")
st.info("Upload the player pricing CSV from the site you are playing on")
upload_csv_col, csv_template_col = st.columns([3, 1])
with upload_csv_col:
csv_file = st.file_uploader("Upload CSV File", type=['csv'])
if 'csv_file' in st.session_state:
del st.session_state['csv_file']
with csv_template_col:
if site_var == 'Draftkings':
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])
else:
csv_template_df = pd.DataFrame(columns=['Nickname', 'Id', 'Roster Position', 'Salary'])
st.download_button(
label="CSV Template",
data=csv_template_df.to_csv(index=False),
file_name="csv_template.csv",
mime="text/csv"
)
st.session_state['csv_file'] = load_csv(csv_file)
try:
st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
except:
pass
if csv_file:
if type_var == 'Showdown':
st.session_state['csv_file']['Position'] = 'FLEX'
else:
if sport_var == 'GOLF':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'GOLF'
elif sport_var == 'TENNIS':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'TENNIS'
elif sport_var == 'MMA':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'MMA'
elif sport_var == 'NASCAR':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'NASCAR'
if site_var == 'Fanduel':
try:
st.session_state['csv_file']['Position'] = st.session_state['csv_file']['Position'].replace('D', 'DST', regex=False)
except:
pass
st.success('Projections file loaded successfully!')
st.dataframe(st.session_state['csv_file'].head(10))
with col2:
st.subheader("Portfolio File")
st.info("Go ahead and upload a portfolio file here. Only include player columns.")
upload_toggle = st.selectbox("What source are you uploading from?", options=['SaberSim (Just IDs)', 'Draftkings/Fanduel (Names + IDs)', 'Other (Just Names)'])
if upload_toggle == 'SaberSim (Just IDs)' or upload_toggle == 'Draftkings/Fanduel (Names + IDs)':
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
else:
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
if 'portfolio' not in st.session_state:
if portfolio_file:
if upload_toggle == 'SaberSim (Just IDs)':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
elif upload_toggle == 'Draftkings/Fanduel (Names + IDs)':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_dk_fd_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
else:
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file, site_var, type_var, sport_var, 'portfolio')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
if st.session_state['portfolio'] is not None:
# Optimize data types early for memory efficiency
st.session_state['portfolio'] = optimize_dataframe_dtypes(st.session_state['portfolio'])
st.success('Portfolio file loaded successfully!')
for col in st.session_state['portfolio'].select_dtypes(include=['object', 'category']).columns:
if st.session_state['portfolio'][col].dtype == 'category':
# Handle categorical columns
st.session_state['portfolio'][col] = st.session_state['portfolio'][col].cat.rename_categories(
lambda x: player_right_names_mlb.get(x, x) if x in player_wrong_names_mlb else x
)
else:
# Handle object columns
st.session_state['portfolio'][col] = st.session_state['portfolio'][col].replace(player_wrong_names_mlb)
st.dataframe(st.session_state['portfolio'].head(10))
with col3:
st.subheader("Projections File")
st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
# Create two columns for the uploader and template button
upload_col, template_col = st.columns([3, 1])
with upload_col:
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'projections_df' in st.session_state:
del st.session_state['projections_df']
with template_col:
# Create empty DataFrame with required columns
template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
# Add download button for template
st.download_button(
label="Template",
data=template_df.to_csv(index=False),
file_name="projections_template.csv",
mime="text/csv"
)
if projections_file:
export_projections, projections = load_file(projections_file, site_var, type_var, sport_var, 'projections')
if projections is not None:
st.success('Projections file loaded successfully!')
# Optimize projections data types early
try:
projections['salary'] = projections['salary'].str.replace(',', '').str.replace('$', '').str.replace(' ', '')
st.write('replaced salary symbols')
except:
pass
try:
projections['ownership'] = projections['ownership'].str.replace('%', '').str.replace(' ', '')
st.write('replaced ownership symbols')
except:
pass
# Convert to efficient data types
projections['salary'] = projections['salary'].dropna().astype('int32')
projections['ownership'] = projections['ownership'].astype('float32')
if projections['captain ownership'].isna().all():
projections['CPT_Own_raw'] = (projections['ownership'] / 2) * ((100 - (100-projections['ownership']))/100)
cpt_own_var = 100 / projections['CPT_Own_raw'].sum()
projections['captain ownership'] = projections['CPT_Own_raw'] * cpt_own_var
projections = projections.drop(columns='CPT_Own_raw', axis=1)
projections['captain ownership'] = projections['captain ownership'].astype('float32')
projections['median'] = projections['median'].astype('float32')
# More efficient string replacement for projections
for col in projections.select_dtypes(include=['object']).columns:
projections[col] = projections[col].replace(player_wrong_names_mlb)
# Set position/team variables if needed
if position_var is not None:
projections['position'] = position_var
if team_var is not None:
projections['team'] = team_var
st.dataframe(projections.head(10))
if portfolio_file and projections_file:
if st.session_state['portfolio'] is not None and projections is not None:
st.subheader("Name Matching Analysis")
# Get unique names from portfolio
portfolio_names = get_portfolio_names(st.session_state['portfolio'])
try:
csv_names = st.session_state['csv_file']['Name'].tolist()
except:
csv_names = st.session_state['csv_file']['Nickname'].tolist()
projection_names = projections['player_names'].tolist()
# Use chunked name matching for memory efficiency
portfolio_match_dict, unmatched_names = chunk_name_matching(portfolio_names, csv_names)
# Update portfolio with matched names (in-place to save memory)
player_columns = [col for col in st.session_state['portfolio'].columns
if col not in ['salary', 'median', 'Own']]
# For each player column, update names using the match dictionary
for col in player_columns:
st.session_state['portfolio'][col] = st.session_state['portfolio'][col].map(lambda x: portfolio_match_dict.get(x, x))
# Create match dictionary for projections to CSV names (chunked)
projections_match_dict, unmatched_proj_names = chunk_name_matching(projection_names, csv_names)
# Update projections with matched names
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
st.session_state['projections_df'] = projections
# Second round of matching (projections to portfolio)
projections_names = st.session_state['projections_df']['player_names'].tolist()
portfolio_names = get_portfolio_names(st.session_state['portfolio'])
projections_match_dict2, unmatched_proj_names2 = chunk_name_matching(projection_names, portfolio_names)
# Update projections with matched names
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict2.get(x, x))
st.session_state['projections_df'] = projections
# Handle stacking if needed
if sport_var in stacking_sports:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '',
axis=1
)
st.session_state['portfolio']['Size'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0,
axis=1
)
st.session_state['stack_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
st.session_state['size_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Size']))
# Create export dictionary
try:
st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Name'], st.session_state['csv_file']['Name + ID']))
except:
st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Nickname'], st.session_state['csv_file']['Id']))
# Create memory-efficient mappings
if 'map_dict' not in st.session_state:
st.session_state['map_dict'] = create_memory_efficient_mappings(st.session_state['projections_df'], site_var, type_var, sport_var)
# Store portfolio in compressed format and clean up
st.session_state['portfolio'] = st.session_state['portfolio'].astype(str)
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio'].isin(['', 'nan', 'None', 'NaN']).any(axis=1)].reset_index(drop=True)
buffer = io.BytesIO()
st.session_state['portfolio'].to_parquet(buffer, compression='snappy')
st.session_state['origin_portfolio'] = buffer.getvalue()
# Clear large objects from session state to free memory
del st.session_state['portfolio'], st.session_state['export_portfolio']
# with tab2:
# if st.button('Clear data', key='reset2'):
# st.session_state.clear()
# if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
# optimized_df = None
# map_dict = {
# 'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['position'])),
# 'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['salary'])),
# 'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['median'])),
# 'own_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['ownership'])),
# 'team_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['team']))
# }
# # Calculate new stats for optimized lineups
# st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# options_container = st.container()
# with options_container:
# col1, col2, col3, col4, col5, col6 = st.columns(6)
# with col1:
# curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel'])
# with col2:
# curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA'])
# with col3:
# swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility'])
# with col4:
# remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique())
# with col5:
# winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
# with col6:
# losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
# if st.button('Clear Late Swap'):
# if 'optimized_df' in st.session_state:
# del st.session_state['optimized_df']
# map_dict = {
# 'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['position'])),
# 'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['salary'])),
# 'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['median'])),
# 'own_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['ownership'])),
# 'team_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['team']))
# }
# # Calculate new stats for optimized lineups
# st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# if st.button('Run Late Swap'):
# st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own'])
# if curr_sport_var == 'NBA':
# if curr_site_var == 'DraftKings':
# st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1)
# else:
# st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1)
# # Define roster position rules
# if curr_site_var == 'DraftKings':
# position_rules = {
# 'PG': ['PG'],
# 'SG': ['SG'],
# 'SF': ['SF'],
# 'PF': ['PF'],
# 'C': ['C'],
# 'G': ['PG', 'SG'],
# 'F': ['SF', 'PF'],
# 'UTIL': ['PG', 'SG', 'SF', 'PF', 'C']
# }
# else:
# position_rules = {
# 'PG': ['PG'],
# 'SG': ['SG'],
# 'SF': ['SF'],
# 'PF': ['PF'],
# 'C': ['C'],
# }
# # Create position groups from projections data
# position_groups = {}
# for _, player in st.session_state['projections_df'].iterrows():
# positions = player['position'].split('/')
# for pos in positions:
# if pos not in position_groups:
# position_groups[pos] = []
# position_groups[pos].append({
# 'player_names': player['player_names'],
# 'salary': player['salary'],
# 'median': player['median'],
# 'ownership': player['ownership'],
# 'positions': positions # Store all eligible positions
# })
# def optimize_lineup(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Optimize each roster position in random order
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Skip optimization for players from removed teams
# if current['team'] in remove_teams_var:
# continue
# valid_positions = position_rules[roster_pos]
# better_options = []
# # Find valid replacements for this roster position
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['median'] > current['median']
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by median projection and take the best one
# best_replacement = max(better_options, key=lambda x: x['median'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# def optimize_lineup_winners(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Check if any winners are in the lineup and count them
# winners_in_lineup = sum(1 for player in row if player in winners_var)
# changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0
# changes_made = 0
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Only proceed with ownership-based optimization if we have winners in the lineup
# if changes_needed > 0:
# # Randomize the order of positions to optimize
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Stop if we've made enough changes
# if changes_made >= changes_needed:
# break
# # Skip optimization for players from removed teams or if the current player is a winner
# if current['team'] in remove_teams_var or current['name'] in winners_var:
# continue
# valid_positions = list(position_rules[roster_pos])
# random.shuffle(valid_positions)
# better_options = []
# # Find valid replacements with higher ownership
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['ownership'] > current['ownership']
# and p['median'] >= current['median'] - 3
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by ownership and take the highest owned option
# best_replacement = max(better_options, key=lambda x: x['ownership'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# changes_made += 1
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# def optimize_lineup_losers(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Check if any winners are in the lineup and count them
# losers_in_lineup = sum(1 for player in row if player in losers_var)
# changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0
# changes_made = 0
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Only proceed with ownership-based optimization if we have winners in the lineup
# if changes_needed > 0:
# # Randomize the order of positions to optimize
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Stop if we've made enough changes
# if changes_made >= changes_needed:
# break
# # Skip optimization for players from removed teams or if the current player is a winner
# if current['team'] in remove_teams_var or current['name'] in losers_var:
# continue
# valid_positions = list(position_rules[roster_pos])
# random.shuffle(valid_positions)
# better_options = []
# # Find valid replacements with higher ownership
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['ownership'] < current['ownership']
# and p['median'] >= current['median'] - 3
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by ownership and take the highest owned option
# best_replacement = max(better_options, key=lambda x: x['ownership'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# changes_made += 1
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# # Create a progress bar
# progress_bar = st.progress(0)
# status_text = st.empty()
# # Process each lineup
# optimized_lineups = []
# total_lineups = len(st.session_state['portfolio'])
# for idx, row in st.session_state['portfolio'].iterrows():
# # First optimization pass
# first_pass = optimize_lineup(row)
# first_pass_series = pd.Series(first_pass, index=row.index)
# second_pass = optimize_lineup(first_pass_series)
# second_pass_series = pd.Series(second_pass, index=row.index)
# third_pass = optimize_lineup(second_pass_series)
# third_pass_series = pd.Series(third_pass, index=row.index)
# fourth_pass = optimize_lineup(third_pass_series)
# fourth_pass_series = pd.Series(fourth_pass, index=row.index)
# fifth_pass = optimize_lineup(fourth_pass_series)
# fifth_pass_series = pd.Series(fifth_pass, index=row.index)
# # Second optimization pass
# final_lineup = optimize_lineup(fifth_pass_series)
# optimized_lineups.append(final_lineup)
# if 'Optimize' in swap_var:
# progress = (idx + 1) / total_lineups
# progress_bar.progress(progress)
# status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Optimize' in swap_var:
# st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns)
# else:
# st.session_state['optimized_df_medians'] = st.session_state['portfolio']
# # Create a progress bar
# progress_bar_winners = st.progress(0)
# status_text_winners = st.empty()
# # Process each lineup
# optimized_lineups_winners = []
# total_lineups = len(st.session_state['optimized_df_medians'])
# for idx, row in st.session_state['optimized_df_medians'].iterrows():
# final_lineup = optimize_lineup_winners(row)
# optimized_lineups_winners.append(final_lineup)
# if 'Decrease volatility' in swap_var:
# progress_winners = (idx + 1) / total_lineups
# progress_bar_winners.progress(progress_winners)
# status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Decrease volatility' in swap_var:
# st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns)
# else:
# st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians']
# # Create a progress bar
# progress_bar_losers = st.progress(0)
# status_text_losers = st.empty()
# # Process each lineup
# optimized_lineups_losers = []
# total_lineups = len(st.session_state['optimized_df_winners'])
# for idx, row in st.session_state['optimized_df_winners'].iterrows():
# final_lineup = optimize_lineup_losers(row)
# optimized_lineups_losers.append(final_lineup)
# if 'Increase volatility' in swap_var:
# progress_losers = (idx + 1) / total_lineups
# progress_bar_losers.progress(progress_losers)
# status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Increase volatility' in swap_var:
# st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns)
# else:
# st.session_state['optimized_df'] = st.session_state['optimized_df_winners']
# # Calculate new stats for optimized lineups
# st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# # Display results
# st.success('Optimization complete!')
# if 'optimized_df' in st.session_state:
# st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:")
# st.dataframe(
# st.session_state['optimized_df'].style
# .apply(highlight_changes, axis=1)
# .apply(highlight_changes_winners, axis=1)
# .apply(highlight_changes_losers, axis=1)
# .background_gradient(axis=0)
# .background_gradient(cmap='RdYlGn')
# .format(precision=2),
# height=1000,
# use_container_width=True
# )
# # Option to download optimized lineups
# if st.button('Prepare Late Swap Export'):
# export_df = st.session_state['optimized_df'].copy()
# # Map player names to their export IDs for all player columns
# for col in export_df.columns:
# if col not in ['salary', 'median', 'Own']:
# export_df[col] = export_df[col].map(st.session_state['export_dict'])
# csv = export_df.to_csv(index=False)
# st.download_button(
# label="Download CSV",
# data=csv,
# file_name="optimized_lineups.csv",
# mime="text/csv"
# )
# else:
# st.write("Current Portfolio")
# st.dataframe(
# st.session_state['portfolio'].style
# .background_gradient(axis=0)
# .background_gradient(cmap='RdYlGn')
# .format(precision=2),
# height=1000,
# use_container_width=True
# )
if selected_tab == 'Manage Portfolio':
if 'origin_portfolio' in st.session_state and 'projections_df' in st.session_state:
with st.container():
reset_port_col, recalc_div_col, blank_reset_col, contest_size_col = st.columns([1, 1, 6, 4])
with reset_port_col:
if st.button('Reset Portfolio', key='reset_port'):
st.session_state['settings_base'] = True
st.session_state['working_frame'] = st.session_state['base_frame']
with recalc_div_col:
if st.button("Recalculate Diversity"):
st.session_state['display_frame']['Diversity'] = recalc_diversity(st.session_state['display_frame'], st.session_state['player_columns'])
with contest_size_col:
with st.form(key='contest_size_form'):
size_col, strength_col, submit_col = st.columns(3)
with size_col:
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
with strength_col:
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
with submit_col:
submitted = st.form_submit_button("Submit Size/Strength")
if submitted:
del st.session_state['working_frame']
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Lineup Edge_Raw', 'Weighted Own', 'Geomean', 'Diversity']
if 'working_frame' not in st.session_state:
st.session_state['settings_base'] = True
st.session_state['working_frame'] = pd.read_parquet(io.BytesIO(st.session_state['origin_portfolio']))
st.session_state['player_columns'] = [col for col in st.session_state['working_frame'].columns if col not in excluded_cols]
# Use vectorized calculation function
st.session_state['working_frame'] = calculate_lineup_metrics(
st.session_state['working_frame'],
st.session_state['player_columns'],
st.session_state['map_dict'],
type_var,
sport_var,
st.session_state['projections_df'] if 'stack_dict' in st.session_state else None
)
st.session_state['working_frame'] = st.session_state['working_frame'][st.session_state['working_frame']['salary'] <= salary_max]
# Map existing stack/size data if available
if 'stack_dict' in st.session_state:
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].index.map(st.session_state['stack_dict'])
st.session_state['working_frame']['Size'] = st.session_state['working_frame'].index.map(st.session_state['size_dict'])
st.session_state['base_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
# st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
# st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
#set some maxes for trimming variables
if 'trimming_dict_maxes' not in st.session_state:
st.session_state['trimming_dict_maxes'] = {
'Own': st.session_state['working_frame']['Own'].max(),
'Geomean': st.session_state['working_frame']['Geomean'].max(),
'Weighted Own': st.session_state['working_frame']['Weighted Own'].max(),
'median': st.session_state['working_frame']['median'].max(),
'Finish_percentile': st.session_state['working_frame']['Finish_percentile'].max(),
'Diversity': st.session_state['working_frame']['Diversity'].max()
}
with st.sidebar:
if 'trimming_dict_maxes' not in st.session_state:
st.session_state['trimming_dict_maxes'] = {
'Own': 500.0,
'Geomean': 500.0,
'Weighted Own': 500.0,
'median': 500.0,
'Finish_percentile': 1.0,
'Diversity': 1.0
}
with st.expander('Macro Filter Options'):
# recent changes for showdown included
with st.form(key='macro_filter_form'):
macro_min_col, macro_max_col = st.columns(2)
with macro_min_col:
min_salary = st.number_input("Min acceptable salary?", value=0, min_value=0, max_value=salary_max, step=100)
min_proj = st.number_input("Min acceptable projection?", value=0.0, min_value=0.0, max_value=500.0, step=1.0)
min_own = st.number_input("Min acceptable ownership?", value=0.0, min_value=0.0, max_value=500.0, step=1.0)
min_dupes = st.number_input("Min acceptable dupes?", value=0, min_value=0, max_value=1000, step=1)
min_finish_percentile = st.number_input("Min acceptable finish percentile?", value=0.00, min_value=0.00, max_value=1.00, step=.001)
min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-1.00, min_value=-1.00, max_value=1.00, step=.001)
with macro_max_col:
max_salary = st.number_input("Max acceptable salary?", value=salary_max, min_value=0, max_value=salary_max, step=100)
max_proj = st.number_input("Max acceptable projection?", value=500.0, min_value=0.0, max_value=500.0, step=1.0)
max_own = st.number_input("Max acceptable ownership?", value=500.0, min_value=0.0, max_value=500.0, step=1.0)
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, max_value=1000, step=1)
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=1.00, min_value=0.00, max_value=1.00, step=.001)
max_lineup_edge = st.number_input("Max acceptable Lineup Edge?", value=1.00, min_value=-1.00, max_value=1.00, step=.001)
if sport_var in stacking_sports:
stack_include_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[])
stack_remove_toggle = st.selectbox("Remove specific stacks?", options=['No', 'Yes'], index=0)
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[])
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
# Use index-based filtering instead of copying DataFrame
filter_mask = (
(st.session_state['working_frame']['salary'] >= min_salary) &
(st.session_state['working_frame']['salary'] <= max_salary) &
(st.session_state['working_frame']['median'] >= min_proj) &
(st.session_state['working_frame']['median'] <= max_proj) &
(st.session_state['working_frame']['Own'] >= min_own) &
(st.session_state['working_frame']['Own'] <= max_own) &
(st.session_state['working_frame']['Dupes'] >= min_dupes) &
(st.session_state['working_frame']['Dupes'] <= max_dupes) &
(st.session_state['working_frame']['Finish_percentile'] >= min_finish_percentile) &
(st.session_state['working_frame']['Finish_percentile'] <= max_finish_percentile) &
(st.session_state['working_frame']['Lineup Edge'] >= min_lineup_edge) &
(st.session_state['working_frame']['Lineup Edge'] <= max_lineup_edge)
)
# Handle stack filtering
if 'Stack' in st.session_state['working_frame'].columns:
if stack_include_toggle != 'All Stacks':
filter_mask &= st.session_state['working_frame']['Stack'].isin(stack_selections)
if stack_remove_toggle == 'Yes':
filter_mask &= ~st.session_state['working_frame']['Stack'].isin(stack_remove)
# Apply all filters at once
st.session_state['working_frame'] = st.session_state['working_frame'][filter_mask].sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
if exp_submitted:
st.session_state['settings_base'] = False
# Use index-based filtering for export_base
export_filter_mask = (
(st.session_state['export_base']['salary'] >= min_salary) &
(st.session_state['export_base']['salary'] <= max_salary) &
(st.session_state['export_base']['median'] >= min_proj) &
(st.session_state['export_base']['median'] <= max_proj) &
(st.session_state['export_base']['Own'] >= min_own) &
(st.session_state['export_base']['Own'] <= max_own) &
(st.session_state['export_base']['Dupes'] >= min_dupes) &
(st.session_state['export_base']['Dupes'] <= max_dupes) &
(st.session_state['export_base']['Finish_percentile'] >= min_finish_percentile) &
(st.session_state['export_base']['Finish_percentile'] <= max_finish_percentile) &
(st.session_state['export_base']['Lineup Edge'] >= min_lineup_edge) &
(st.session_state['export_base']['Lineup Edge'] <= max_lineup_edge)
)
if 'Stack' in st.session_state['export_base'].columns:
if stack_include_toggle != 'All Stacks':
export_filter_mask &= st.session_state['export_base']['Stack'].isin(stack_selections)
if stack_remove_toggle == 'Yes':
export_filter_mask &= ~st.session_state['export_base']['Stack'].isin(stack_remove)
st.session_state['export_base'] = st.session_state['export_base'][export_filter_mask].sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Micro Filter Options'):
with st.form(key='micro_filter_form'):
player_names = set()
for col in st.session_state['working_frame'].columns:
if col not in excluded_cols:
player_names.update(st.session_state['working_frame'][col].unique())
if type_var == 'Showdown':
cpt_flex_focus = st.selectbox("Focus on Overall, CPT, or FLEX?", options=['Overall', 'CPT', 'FLEX'], index=0)
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
team_include = st.multiselect("Include teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
team_remove = st.multiselect("Remove teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
if sport_var in stacking_sports:
size_include = st.multiselect("Include sizes?", options=sorted(list(set(st.session_state['working_frame']['Size'].unique()))), default=[])
else:
size_include = []
if sport_var == 'NFL':
qb_force = st.selectbox("Force QB Stacks?", options=['No', 'Yes'], index=0)
else:
qb_force = 'No'
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
if player_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
remove_mask = parsed_frame.iloc[:, 0].apply(
lambda player: not any(remove_player in str(player) for remove_player in player_remove)
)
elif cpt_flex_focus == 'FLEX':
remove_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
else:
# Create mask for lineups that contain any of the removed players
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if player_lock:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
lock_mask = parsed_frame.iloc[:, 0].apply(
lambda player: any(lock_player in str(player) for lock_player in player_lock)
)
elif cpt_flex_focus == 'FLEX':
lock_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
elif cpt_flex_focus == 'Overall':
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
else:
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
parsed_frame = parsed_frame[lock_mask]
if team_include:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that contain any of the included teams
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
parsed_frame = parsed_frame[include_mask]
if team_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that don't contain any of the removed teams
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if size_include:
parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)]
if qb_force == 'Yes':
if type_var == 'Classic':
# Get team for the first player column for each lineup
team_frame = parsed_frame.iloc[:, 0].map(st.session_state['map_dict']['team_map'])
# Create mask where the first player's team matches the Stack column
include_mask = team_frame == parsed_frame['Stack']
parsed_frame = parsed_frame[include_mask]
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
if player_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
remove_mask = parsed_frame.iloc[:, 0].apply(
lambda player: not any(remove_player in str(player) for remove_player in player_remove)
)
elif cpt_flex_focus == 'FLEX':
remove_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
else:
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if player_lock:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
lock_mask = parsed_frame.iloc[:, 0].apply(
lambda player: any(lock_player in str(player) for lock_player in player_lock)
)
elif cpt_flex_focus == 'FLEX':
lock_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
elif cpt_flex_focus == 'Overall':
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
else:
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
parsed_frame = parsed_frame[lock_mask]
if team_include:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that contain any of the included teams
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
parsed_frame = parsed_frame[include_mask]
if team_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that don't contain any of the removed teams
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if size_include:
parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)]
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Trimming Options'):
with st.form(key='trim_form'):
st.write("Sorting and trimming variables:")
perf_var, own_var = st.columns(2)
with perf_var:
performance_type = st.selectbox("Sorting variable", ['median', 'Own', 'Weighted Own'], key='sort_var')
with own_var:
own_type = st.selectbox("Trimming variable", ['Own', 'Geomean', 'Weighted Own', 'Diversity'], key='trim_var')
trim_slack_var = st.number_input("Trim slack (percentile addition to trimming variable ceiling)", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key='trim_slack')
st.write("Sorting threshold range:")
min_sort, max_sort = st.columns(2)
with min_sort:
performance_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_sort')
with max_sort:
performance_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][performance_type]), min_value=0.0, step=1.0, key='max_sort')
st.write("Trimming threshold range:")
min_trim, max_trim = st.columns(2)
with min_trim:
own_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_trim')
with max_trim:
own_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][own_type]), min_value=0.0, step=1.0, key='max_trim')
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
st.write('initiated')
parsed_frame = st.session_state['working_frame'].copy()
parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low)
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low)
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Presets'):
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
with st.form(key='Small Field Preset'):
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Manage Diversity)', 'Hedge Chalk (Manage Leverage)', 'Volatility (Heavy Lineup Edge)'], index=0)
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
if preset_choice == 'Small Field (Heavy Own)':
parsed_frame = small_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Large Field (Manage Diversity)':
parsed_frame = large_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Volatility (Heavy Lineup Edge)':
parsed_frame = volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'], sport_var)
elif preset_choice == 'Reduce Volatility (Manage Own)':
parsed_frame = reduce_volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
if preset_choice == 'Small Field (Heavy Own)':
parsed_frame = small_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Large Field (Manage Diversity)':
parsed_frame = large_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Volatility (Heavy Lineup Edge)':
parsed_frame = volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
parsed_frame = hedging_preset(st.session_state['export_base'], lineup_target, st.session_state['projections_df'], sport_var)
elif preset_choice == 'Reduce Volatility (Manage Own)':
parsed_frame = reduce_volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Stratify'):
with st.form(key='Stratification'):
sorting_choice = st.selectbox("Stat Choice", options=['median', 'Own', 'Weighted Own', 'Geomean', 'Lineup Edge', 'Finish_percentile', 'Diversity'], index=0)
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
strat_sample = st.slider("Sample range", value=[0.0, 100.0], min_value=0.0, max_value=100.0, step=1.0)
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = stratification_function(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1])
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = stratification_function(st.session_state['export_base'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1])
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Conditionals Manager (players)'):
# a set of functions for removing lineups that contain a conditional between players and stacks
with st.form(key='conditional_players_form'):
player_names = set()
for col in st.session_state['working_frame'].columns:
if col not in excluded_cols:
player_names.update(st.session_state['working_frame'][col].unique())
keep_remove_var = st.selectbox("Conditional:", options=['Keep', 'Remove'], index=0)
conditional_side_alpha = st.multiselect("Lineups containing:", options=sorted(list(player_names)), default=[])
cpt_flex_alpha = st.selectbox("in slot:", options=['Overall', 'CPT', 'FLEX'], index=0, key='cpt_flex_alpha')
conditional_var = st.selectbox("where they also contain:", options=['Any', 'All', 'None'], index=0)
conditional_side_beta = st.multiselect("of the following player(s):", options=sorted(list(player_names)), default=[])
cpt_flex_beta = st.selectbox("in slot:", options=['Overall', 'CPT', 'FLEX'], index=0, key='cpt_flex_beta')
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
# Check if we have players selected for both alpha and beta sides
if conditional_side_alpha and conditional_side_beta:
# Create boolean mask for rows containing ALL players from alpha side
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
# Only apply beta logic to rows that match alpha condition
rows_to_process = alpha_mask
# For rows that match alpha condition, check beta condition
if conditional_var == 'Any':
# Check if row contains ANY of the beta players
beta_mask = pd.Series([False] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask | player_present
elif conditional_var == 'All':
# Check if row contains ALL of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & player_present
elif conditional_var == 'None':
# Check if row contains NONE of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & (~player_present)
# Combine conditions: alpha_mask AND beta_mask
final_condition = rows_to_process & beta_mask
# Apply keep or remove logic
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[~rows_to_process | final_condition]
else: # Remove
parsed_frame = parsed_frame[~final_condition]
elif conditional_side_alpha:
# Only alpha side specified - filter based on presence of alpha players
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[alpha_mask]
else: # Remove
parsed_frame = parsed_frame[~alpha_mask]
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
# Check if we have players selected for both alpha and beta sides
if conditional_side_alpha and conditional_side_beta:
# Create boolean mask for rows containing ALL players from alpha side
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
# Only apply beta logic to rows that match alpha condition
rows_to_process = alpha_mask
# For rows that match alpha condition, check beta condition
if conditional_var == 'Any':
# Check if row contains ANY of the beta players
beta_mask = pd.Series([False] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask | player_present
elif conditional_var == 'All':
# Check if row contains ALL of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & player_present
elif conditional_var == 'None':
# Check if row contains NONE of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & (~player_present)
# Combine conditions: alpha_mask AND beta_mask
final_condition = rows_to_process & beta_mask
# Apply keep or remove logic
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[~rows_to_process | final_condition]
else: # Remove
parsed_frame = parsed_frame[~final_condition]
elif conditional_side_alpha:
# Only alpha side specified - filter based on presence of alpha players
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[alpha_mask]
else: # Remove
parsed_frame = parsed_frame[~alpha_mask]
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Exposure Management'):
with st.form(key='Exposures'):
exposure_player = st.selectbox("Player", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), key='exposure_player')
exposure_target = st.number_input("Target Exposure", value=.50, min_value=0.0, max_value=1.0, step=0.01)
if 'Stack' in st.session_state['working_frame'].columns:
ignore_stacks = st.multiselect("Ignore Specific Stacks?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
else:
ignore_stacks = []
remove_teams_exposure = st.multiselect("Removed/Locked teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
specific_replacements = st.multiselect("Specific Replacements?", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), default=[])
# Considering making it so Showdown is CPT/FLEX not column specific but eh
specific_columns = st.multiselect("Specific Positions?", options=sorted(list(st.session_state['player_columns'])), default=[])
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
# Prepare DataFrame for exposure_spread to avoid categorical issues
working_frame_prepared = prepare_dataframe_for_exposure_spread(st.session_state['working_frame'], st.session_state['player_columns'])
parsed_frame = exposure_spread(working_frame_prepared, st.session_state['exposure_player'], exposure_target, ignore_stacks, remove_teams_exposure, specific_replacements, specific_columns, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports)
# Use consolidated calculation function
parsed_frame = calculate_lineup_metrics(
parsed_frame,
st.session_state['player_columns'],
st.session_state['map_dict'],
type_var,
sport_var,
st.session_state['projections_df']
)
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
# st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '',
axis=1
)
st.session_state['working_frame']['Size'] = st.session_state['working_frame'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0,
axis=1
)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
# Prepare DataFrame for exposure_spread to avoid categorical issues
export_base_prepared = prepare_dataframe_for_exposure_spread(st.session_state['export_base'], st.session_state['player_columns'])
parsed_frame = exposure_spread(export_base_prepared, st.session_state['exposure_player'], exposure_target, ignore_stacks, remove_teams_exposure, specific_replacements, specific_columns, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports)
# Use consolidated calculation function for export
parsed_frame = calculate_lineup_metrics(
parsed_frame,
st.session_state['player_columns'],
st.session_state['map_dict'],
type_var,
sport_var,
st.session_state['projections_df']
)
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
# st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '',
axis=1
)
st.session_state['working_frame']['Size'] = st.session_state['working_frame'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0,
axis=1
)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.container():
if 'export_base' not in st.session_state:
st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns)
display_frame_source = st.selectbox("Display:", options=['Portfolio', 'Export Base'], key='display_frame_source')
if display_frame_source == 'Portfolio':
st.session_state['display_frame'] = st.session_state['working_frame']
st.session_state['export_file'] = st.session_state['display_frame'].copy()
for col in st.session_state['export_file'].columns:
if col not in excluded_cols:
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict'])
elif display_frame_source == 'Export Base':
st.session_state['display_frame'] = st.session_state['export_base']
st.session_state['export_file'] = st.session_state['display_frame'].copy()
for col in st.session_state['export_file'].columns:
if col not in excluded_cols:
# Create position-specific export dictionary on the fly
position_dict = create_position_export_dict(col, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(position_dict)
if 'export_file' in st.session_state:
download_port, merge_port, clear_export, add_rows_col, remove_rows_col, blank_export_col = st.columns([1, 1, 1, 2, 2, 6])
with download_port:
st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
with merge_port:
if st.button("Add all to Custom Export"):
st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['export_merge']])
st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates()
st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True)
with clear_export:
if st.button("Clear Custom Export"):
st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns)
if display_frame_source == 'Portfolio':
st.session_state['display_frame'] = st.session_state['working_frame']
elif display_frame_source == 'Export Base':
st.session_state['display_frame'] = st.session_state['export_base']
with add_rows_col:
select_custom_index = st.multiselect("Select rows to add (based on first column):", options=st.session_state['display_frame'].index, default=[])
if st.button("Add selected to Custom Export"):
st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['display_frame'].loc[select_custom_index]])
st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates()
st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True)
with remove_rows_col:
remove_custom_index = st.multiselect("Remove rows (based on first column):", options=st.session_state['display_frame'].index, default=[])
if st.button("Remove selected from Display"):
st.session_state['display_frame'] = st.session_state['display_frame'].drop(remove_custom_index)
st.session_state['display_frame'] = st.session_state['display_frame'].drop_duplicates()
st.session_state['display_frame'] = st.session_state['display_frame'].reset_index(drop=True)
total_rows = len(st.session_state['display_frame'])
rows_per_page = 500
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division
# Initialize page number in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Display current page range info and pagination control in a single line
st.write(
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
)
# Add page number input
st.session_state.current_page = st.number_input(
f"Page (1-{total_pages})",
min_value=1,
max_value=total_pages,
value=st.session_state.current_page
)
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
# Get the subset of data for the current page
current_page_data = st.session_state['display_frame'].iloc[start_idx:end_idx]
# Display the paginated dataframe first
st.dataframe(
current_page_data.style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
.format(freq_format, precision=2),
column_config={
"Finish_percentile": st.column_config.NumberColumn(
"Finish%",
help="Projected finishing percentile",
width="small",
min_value=0.0,
max_value=1.0
),
"Lineup Edge": st.column_config.NumberColumn(
"Edge",
help="Projected lineup edge",
width="small",
min_value=-1.0,
max_value=1.0
),
"Diversity": st.column_config.NumberColumn(
"Diversity",
help="Projected lineup diversity",
width="small",
min_value=0.0,
max_value=1.0
),
},
height=499,
use_container_width=True
)
player_stats_col, stack_stats_col, combos_col = st.tabs(['Player Stats', 'Stack Stats', 'Combos'])
with player_stats_col:
if st.button("Analyze Players", key='analyze_players'):
player_stats = []
if st.session_state['settings_base'] and 'origin_player_exposures' in st.session_state and display_frame_source == 'Portfolio':
st.session_state['player_summary'] = st.session_state['origin_player_exposures']
else:
if type_var == 'Showdown':
if sport_var == 'GOLF':
for player in player_names:
player_mask = st.session_state['display_frame'][st.session_state['player_columns']].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': player_mask.sum(),
'Exposure': player_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][player_mask]['Diversity'].mean(),
})
else:
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['display_frame'][st.session_state['player_columns'][0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': cpt_mask.sum(),
'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][cpt_mask]['Diversity'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['display_frame'][st.session_state['player_columns'][1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': flex_mask.sum(),
'Exposure': flex_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][flex_mask]['Diversity'].mean(),
})
else:
if sport_var == 'CS2' or sport_var == 'LOL':
# Handle Captain positions
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['display_frame'][st.session_state['player_columns'][0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': cpt_mask.sum(),
'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][cpt_mask]['Diversity'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['display_frame'][st.session_state['player_columns'][1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': flex_mask.sum(),
'Exposure': flex_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][flex_mask]['Diversity'].mean(),
})
elif sport_var != 'CS2' and sport_var != 'LOL':
# Original Classic format processing
for player in player_names:
player_mask = st.session_state['display_frame'][st.session_state['player_columns']].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': player_mask.sum(),
'Exposure': player_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][player_mask]['Diversity'].mean(),
})
player_summary = pd.DataFrame(player_stats)
player_summary = player_summary.sort_values('Lineup Count', ascending=False)
st.session_state['player_summary'] = player_summary.copy()
if 'origin_player_exposures' not in st.session_state:
st.session_state['origin_player_exposures'] = player_summary.copy()
st.subheader("Player Summary")
st.dataframe(
st.session_state['player_summary'].style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}',
'Avg Diversity': '{:.2%}'
}),
height=400,
use_container_width=True
)
with stack_stats_col:
if 'Stack' in st.session_state['display_frame'].columns:
if st.button("Analyze Stacks", key='analyze_stacks'):
stack_stats = []
stack_columns = [col for col in st.session_state['display_frame'].columns if col.startswith('Stack')]
if st.session_state['settings_base'] and 'origin_stack_exposures' in st.session_state and display_frame_source == 'Portfolio':
st.session_state['stack_summary'] = st.session_state['origin_stack_exposures']
else:
for stack in st.session_state['stack_dict'].values():
stack_mask = st.session_state['display_frame']['Stack'] == stack
if stack_mask.any():
stack_stats.append({
'Stack': stack,
'Lineup Count': stack_mask.sum(),
'Exposure': stack_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][stack_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][stack_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][stack_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][stack_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][stack_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][stack_mask]['Diversity'].mean(),
})
stack_summary = pd.DataFrame(stack_stats)
stack_summary = stack_summary.sort_values('Lineup Count', ascending=False).drop_duplicates()
st.session_state['stack_summary'] = stack_summary.copy()
if 'origin_stack_exposures' not in st.session_state:
st.session_state['origin_stack_exposures'] = stack_summary.copy()
st.subheader("Stack Summary")
st.dataframe(
st.session_state['stack_summary'].style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}',
'Avg Diversity': '{:.2%}'
}),
height=400,
use_container_width=True
)
else:
stack_summary = pd.DataFrame(columns=['Stack', 'Lineup Count', 'Avg Median', 'Avg Own', 'Avg Dupes', 'Avg Finish %', 'Avg Lineup Edge'])
with combos_col:
st.subheader("Player Combinations")
# Add controls for combo analysis
with st.form("combo_analysis_form"):
combo_size_col, columns_excluded_col, combo_analyze_col = st.columns(3)
with combo_size_col:
combo_size = st.selectbox("Combo Size", [2, 3], key='combo_size')
with columns_excluded_col:
try:
excluded_cols_extended = st.multiselect("Exclude Columns?", st.session_state['display_frame'].drop(columns=excluded_cols).columns, key='excluded_cols_extended')
except:
excluded_cols_extended = st.multiselect("Exclude Columns?", st.session_state['display_frame'].columns, key='excluded_cols_extended')
with combo_analyze_col:
submitted = st.form_submit_button("Analyze Combos")
if submitted:
st.session_state['combo_analysis'] = analyze_player_combos(
st.session_state['display_frame'], excluded_cols + excluded_cols_extended, combo_size
)
# Display results
if 'combo_analysis' in st.session_state:
st.dataframe(
st.session_state['combo_analysis'].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}',
'Avg Diversity': '{:.2%}'
}),
height=400,
use_container_width=True
)
else:
st.info("Click 'Analyze Combos' to see the most common player combinations.")