James McCool
Update sport selection options in app.py to remove duplicate 'NBA' entry, ensuring clarity and consistency in user choices.
56fb76a
raw
history blame
133 kB
import streamlit as st
st.set_page_config(layout="wide")
import pandas as pd
from rapidfuzz import process
import random
from collections import Counter
import io
## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.load_dk_fd_file import load_dk_fd_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches
from global_func.trim_portfolio import trim_portfolio
from global_func.get_portfolio_names import get_portfolio_names
from global_func.small_field_preset import small_field_preset
from global_func.large_field_preset import large_field_preset
from global_func.hedging_preset import hedging_preset
from global_func.volatility_preset import volatility_preset
from global_func.reduce_volatility_preset import reduce_volatility_preset
from global_func.analyze_player_combos import analyze_player_combos
from global_func.stratification_function import stratification_function
from global_func.exposure_spread import exposure_spread
from global_func.reassess_edge import reassess_edge
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
stacking_sports = ['MLB', 'NHL', 'NFL', 'LOL', 'NCAAF']
all_column_stack_sports = ['LOL', 'NCAAF', 'WNBA', 'NBA', 'CS2']
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
def create_position_export_dict(column_name, csv_file, site_var, type_var, sport_var):
try:
# Remove any numbers from the column name to get the position
import re
position_filter = re.sub(r'\d+$', '', column_name)
# Filter CSV file by position
if 'Position' in csv_file.columns:
if type_var == 'Showdown':
filtered_df = csv_file.copy()
else:
if position_filter == 'SP':
filtered_df = csv_file[
csv_file['Roster Position'] == 'P'
]
elif position_filter == 'CPT':
filtered_df = csv_file.copy()
elif position_filter == 'FLEX' or position_filter == 'UTIL':
if sport_var == 'NFL':
filtered_df = csv_file['Position'].isin(['RB', 'WR', 'TE'])
elif sport_var == 'SOC':
filtered_df = csv_file['Position'].str.contains(['D', 'M', 'F'], na=False, regex=False)
elif sport_var == 'NCAAF':
filtered_df = csv_file['Position'].isin(['RB', 'WR'])
elif sport_var == 'NHL':
filtered_df = csv_file['Position'].str.contains(['C', 'W', 'D'], na=False, regex=False)
else:
filtered_df = csv_file.copy()
elif position_filter == 'SFLEX':
filtered_df = csv_file.copy()
elif position_filter == 'C/1B':
filtered_df = csv_file[
csv_file['Position'].str.contains(['C', '1B'], na=False, regex=False)
]
else:
filtered_df = csv_file[
csv_file['Position'].str.contains(position_filter, na=False, regex=False)
]
else:
# Fallback to all players if no position column found
filtered_df = csv_file
# Create the export dictionary for this position
try:
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
return dict(zip(filtered_df['Name'], filtered_df['Name + ID']))
except:
try:
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
return dict(zip(filtered_df['Nickname'], filtered_df['Id']))
except:
# Final fallback
return {}
except Exception as e:
st.error(f"Error creating position export dict for {column_name}: {str(e)}")
return {}
with st.container():
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with col2:
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
with col3:
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'NCAAF', 'MMA', 'CS2', 'LOL', 'TENNIS', 'NASCAR', 'GOLF', 'WNBA', 'F1'])
with col4:
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
if sport_var == 'GOLF':
position_var = 'G'
team_var = 'GOLF'
elif sport_var == 'TENNIS':
position_var = 'T'
team_var = 'TENNIS'
elif sport_var == 'MMA':
position_var = 'F'
team_var = 'MMA'
elif sport_var == 'NASCAR':
position_var = 'D'
team_var = 'NASCAR'
elif sport_var == 'F1':
position_var = 'D'
team_var = 'F1'
else:
position_var = None
team_var = None
if site_var == 'Draftkings':
salary_max = 50000
elif site_var == 'Fanduel':
if type_var == 'Classic':
if sport_var == 'MLB':
salary_max = 40000
elif sport_var == 'WNBA':
salary_max = 40000
elif sport_var == 'GOLF':
salary_max = 60000
elif sport_var == 'MMA':
salary_max = 100
elif sport_var == 'NFL':
salary_max = 60000
elif sport_var == 'NASCAR':
salary_max = 50000
else:
salary_max = 60000
elif type_var == 'Showdown':
salary_max = 60000
tab1, tab2 = st.tabs(["Data Load", "Manage Portfolio"])
with tab1:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
# Add file uploaders to your app
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Draftkings/Fanduel CSV")
st.info("Upload the player pricing CSV from the site you are playing on")
upload_csv_col, csv_template_col = st.columns([3, 1])
with upload_csv_col:
csv_file = st.file_uploader("Upload CSV File", type=['csv'])
if 'csv_file' in st.session_state:
del st.session_state['csv_file']
with csv_template_col:
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])
st.download_button(
label="CSV Template",
data=csv_template_df.to_csv(index=False),
file_name="csv_template.csv",
mime="text/csv"
)
st.session_state['csv_file'] = load_csv(csv_file)
try:
st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
except:
pass
if csv_file:
if type_var == 'Showdown':
st.session_state['csv_file']['Position'] = 'FLEX'
else:
if sport_var == 'GOLF':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'GOLF'
elif sport_var == 'TENNIS':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'TENNIS'
elif sport_var == 'MMA':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'MMA'
elif sport_var == 'NASCAR':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'NASCAR'
# st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name'])
st.success('Projections file loaded successfully!')
st.dataframe(st.session_state['csv_file'].head(10))
with col2:
st.subheader("Portfolio File")
st.info("Go ahead and upload a portfolio file here. Only include player columns.")
upload_toggle = st.selectbox("What source are you uploading from?", options=['SaberSim (Just IDs)', 'Draftkings/Fanduel (Names + IDs)', 'Other (Just Names)'])
if upload_toggle == 'SaberSim (Just IDs)' or upload_toggle == 'Draftkings/Fanduel (Names + IDs)':
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
else:
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
if 'portfolio' not in st.session_state:
if portfolio_file:
if upload_toggle == 'SaberSim (Just IDs)':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
elif upload_toggle == 'Draftkings/Fanduel (Names + IDs)':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_dk_fd_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
else:
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file, site_var, type_var, sport_var, 'portfolio')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
# Check if Stack column exists in the portfolio
if 'Stack' in st.session_state['portfolio'].columns:
# Create dictionary mapping index to Stack values
stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
st.write(f"Found {len(stack_dict)} stack assignments")
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
else:
stack_dict = None
if st.session_state['portfolio'] is not None:
st.success('Portfolio file loaded successfully!')
st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
st.dataframe(st.session_state['portfolio'].head(10))
with col3:
st.subheader("Projections File")
st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
# Create two columns for the uploader and template button
upload_col, template_col = st.columns([3, 1])
with upload_col:
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'projections_df' in st.session_state:
del st.session_state['projections_df']
with template_col:
# Create empty DataFrame with required columns
template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
# Add download button for template
st.download_button(
label="Template",
data=template_df.to_csv(index=False),
file_name="projections_template.csv",
mime="text/csv"
)
if projections_file:
export_projections, projections = load_file(projections_file, site_var, type_var, sport_var, 'projections')
if projections is not None:
st.success('Projections file loaded successfully!')
try:
projections['salary'] = projections['salary'].str.replace(',', '').str.replace('$', '').str.replace(' ', '')
st.write('replaced salary symbols')
except:
pass
try:
projections['ownership'] = projections['ownership'].str.replace('%', '').str.replace(' ', '')
st.write('replaced ownership symbols')
except:
pass
projections['salary'] = projections['salary'].dropna().astype(int)
projections['ownership'] = projections['ownership'].astype(float)
if projections['captain ownership'].isna().all():
projections['CPT_Own_raw'] = (projections['ownership'] / 2) * ((100 - (100-projections['ownership']))/100)
cpt_own_var = 100 / projections['CPT_Own_raw'].sum()
projections['captain ownership'] = projections['CPT_Own_raw'] * cpt_own_var
projections = projections.drop(columns='CPT_Own_raw', axis=1)
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
### if the position column is empty, set to sport_var appropriate position
if position_var is not None:
projections['position'] = position_var
if team_var is not None:
projections['team'] = team_var
st.dataframe(projections.head(10))
if portfolio_file and projections_file:
if st.session_state['portfolio'] is not None and projections is not None:
st.subheader("Name Matching Analysis")
# Initialize projections_df in session state if it doesn't exist
# Get unique names from portfolio
portfolio_names = get_portfolio_names(st.session_state['portfolio'])
try:
csv_names = st.session_state['csv_file']['Name'].tolist()
except:
csv_names = st.session_state['csv_file']['Nickname'].tolist()
projection_names = projections['player_names'].tolist()
# Create match dictionary for portfolio names to projection names
portfolio_match_dict = {}
unmatched_names = []
for portfolio_name in portfolio_names:
match = process.extractOne(
portfolio_name,
csv_names,
score_cutoff=87
)
if match:
portfolio_match_dict[portfolio_name] = match[0]
if match[1] < 100:
st.write(f"{portfolio_name} matched from portfolio to site csv {match[0]} with a score of {match[1]}%")
else:
portfolio_match_dict[portfolio_name] = portfolio_name
unmatched_names.append(portfolio_name)
# Update portfolio with matched names
portfolio = st.session_state['portfolio'].copy()
player_columns = [col for col in portfolio.columns
if col not in ['salary', 'median', 'Own']]
# For each player column, update names using the match dictionary
for col in player_columns:
portfolio[col] = portfolio[col].map(lambda x: portfolio_match_dict.get(x, x))
st.session_state['portfolio'] = portfolio
# Create match dictionary for portfolio names to projection names
projections_match_dict = {}
unmatched_proj_names = []
for projections_name in projection_names:
match = process.extractOne(
projections_name,
csv_names,
score_cutoff=87
)
if match:
projections_match_dict[projections_name] = match[0]
if match[1] < 100:
st.write(f"{projections_name} matched from projections to site csv {match[0]} with a score of {match[1]}%")
else:
projections_match_dict[projections_name] = projections_name
unmatched_proj_names.append(projections_name)
# Update projections with matched names
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
st.session_state['projections_df'] = projections
projections_names = st.session_state['projections_df']['player_names'].tolist()
portfolio_names = get_portfolio_names(st.session_state['portfolio'])
# Create match dictionary for portfolio names to projection names
projections_match_dict = {}
unmatched_proj_names = []
for projections_name in projection_names:
match = process.extractOne(
projections_name,
portfolio_names,
score_cutoff=87
)
if match:
projections_match_dict[projections_name] = match[0]
if match[1] < 100:
st.write(f"{projections_name} matched from portfolio to projections {match[0]} with a score of {match[1]}%")
else:
projections_match_dict[projections_name] = projections_name
unmatched_proj_names.append(projections_name)
# Update projections with matched names
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
st.session_state['projections_df'] = projections
if sport_var in stacking_sports:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
if sport_var in all_column_stack_sports:
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row) else '',
axis=1
)
st.session_state['portfolio']['Size'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row) else 0,
axis=1
)
else:
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[2:]) else '',
axis=1
)
st.session_state['portfolio']['Size'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[2:]) else 0,
axis=1
)
st.session_state['stack_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
st.session_state['size_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Size']))
try:
st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Name'], st.session_state['csv_file']['Name + ID']))
except:
st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Nickname'], st.session_state['csv_file']['Id']))
if 'map_dict' not in st.session_state:
if site_var == 'Draftkings':
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif sport_var != 'CS2' and sport_var != 'LOL':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif type_var == 'Showdown':
if sport_var == 'GOLF':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership']))
}
if sport_var != 'GOLF':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif site_var == 'Fanduel':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
st.session_state['origin_portfolio'] = st.session_state['portfolio'].copy()
buffer = io.BytesIO()
st.session_state['portfolio'].to_parquet(buffer, compression='snappy')
st.session_state['origin_portfolio'] = buffer.getvalue()
del st.session_state['portfolio']
# with tab2:
# if st.button('Clear data', key='reset2'):
# st.session_state.clear()
# if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
# optimized_df = None
# map_dict = {
# 'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['position'])),
# 'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['salary'])),
# 'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['median'])),
# 'own_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['ownership'])),
# 'team_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['team']))
# }
# # Calculate new stats for optimized lineups
# st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# options_container = st.container()
# with options_container:
# col1, col2, col3, col4, col5, col6 = st.columns(6)
# with col1:
# curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel'])
# with col2:
# curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA'])
# with col3:
# swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility'])
# with col4:
# remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique())
# with col5:
# winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
# with col6:
# losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
# if st.button('Clear Late Swap'):
# if 'optimized_df' in st.session_state:
# del st.session_state['optimized_df']
# map_dict = {
# 'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['position'])),
# 'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['salary'])),
# 'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['median'])),
# 'own_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['ownership'])),
# 'team_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['team']))
# }
# # Calculate new stats for optimized lineups
# st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# if st.button('Run Late Swap'):
# st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own'])
# if curr_sport_var == 'NBA':
# if curr_site_var == 'DraftKings':
# st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1)
# else:
# st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1)
# # Define roster position rules
# if curr_site_var == 'DraftKings':
# position_rules = {
# 'PG': ['PG'],
# 'SG': ['SG'],
# 'SF': ['SF'],
# 'PF': ['PF'],
# 'C': ['C'],
# 'G': ['PG', 'SG'],
# 'F': ['SF', 'PF'],
# 'UTIL': ['PG', 'SG', 'SF', 'PF', 'C']
# }
# else:
# position_rules = {
# 'PG': ['PG'],
# 'SG': ['SG'],
# 'SF': ['SF'],
# 'PF': ['PF'],
# 'C': ['C'],
# }
# # Create position groups from projections data
# position_groups = {}
# for _, player in st.session_state['projections_df'].iterrows():
# positions = player['position'].split('/')
# for pos in positions:
# if pos not in position_groups:
# position_groups[pos] = []
# position_groups[pos].append({
# 'player_names': player['player_names'],
# 'salary': player['salary'],
# 'median': player['median'],
# 'ownership': player['ownership'],
# 'positions': positions # Store all eligible positions
# })
# def optimize_lineup(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Optimize each roster position in random order
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Skip optimization for players from removed teams
# if current['team'] in remove_teams_var:
# continue
# valid_positions = position_rules[roster_pos]
# better_options = []
# # Find valid replacements for this roster position
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['median'] > current['median']
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by median projection and take the best one
# best_replacement = max(better_options, key=lambda x: x['median'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# def optimize_lineup_winners(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Check if any winners are in the lineup and count them
# winners_in_lineup = sum(1 for player in row if player in winners_var)
# changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0
# changes_made = 0
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Only proceed with ownership-based optimization if we have winners in the lineup
# if changes_needed > 0:
# # Randomize the order of positions to optimize
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Stop if we've made enough changes
# if changes_made >= changes_needed:
# break
# # Skip optimization for players from removed teams or if the current player is a winner
# if current['team'] in remove_teams_var or current['name'] in winners_var:
# continue
# valid_positions = list(position_rules[roster_pos])
# random.shuffle(valid_positions)
# better_options = []
# # Find valid replacements with higher ownership
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['ownership'] > current['ownership']
# and p['median'] >= current['median'] - 3
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by ownership and take the highest owned option
# best_replacement = max(better_options, key=lambda x: x['ownership'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# changes_made += 1
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# def optimize_lineup_losers(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Check if any winners are in the lineup and count them
# losers_in_lineup = sum(1 for player in row if player in losers_var)
# changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0
# changes_made = 0
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Only proceed with ownership-based optimization if we have winners in the lineup
# if changes_needed > 0:
# # Randomize the order of positions to optimize
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Stop if we've made enough changes
# if changes_made >= changes_needed:
# break
# # Skip optimization for players from removed teams or if the current player is a winner
# if current['team'] in remove_teams_var or current['name'] in losers_var:
# continue
# valid_positions = list(position_rules[roster_pos])
# random.shuffle(valid_positions)
# better_options = []
# # Find valid replacements with higher ownership
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['ownership'] < current['ownership']
# and p['median'] >= current['median'] - 3
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by ownership and take the highest owned option
# best_replacement = max(better_options, key=lambda x: x['ownership'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# changes_made += 1
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# # Create a progress bar
# progress_bar = st.progress(0)
# status_text = st.empty()
# # Process each lineup
# optimized_lineups = []
# total_lineups = len(st.session_state['portfolio'])
# for idx, row in st.session_state['portfolio'].iterrows():
# # First optimization pass
# first_pass = optimize_lineup(row)
# first_pass_series = pd.Series(first_pass, index=row.index)
# second_pass = optimize_lineup(first_pass_series)
# second_pass_series = pd.Series(second_pass, index=row.index)
# third_pass = optimize_lineup(second_pass_series)
# third_pass_series = pd.Series(third_pass, index=row.index)
# fourth_pass = optimize_lineup(third_pass_series)
# fourth_pass_series = pd.Series(fourth_pass, index=row.index)
# fifth_pass = optimize_lineup(fourth_pass_series)
# fifth_pass_series = pd.Series(fifth_pass, index=row.index)
# # Second optimization pass
# final_lineup = optimize_lineup(fifth_pass_series)
# optimized_lineups.append(final_lineup)
# if 'Optimize' in swap_var:
# progress = (idx + 1) / total_lineups
# progress_bar.progress(progress)
# status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Optimize' in swap_var:
# st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns)
# else:
# st.session_state['optimized_df_medians'] = st.session_state['portfolio']
# # Create a progress bar
# progress_bar_winners = st.progress(0)
# status_text_winners = st.empty()
# # Process each lineup
# optimized_lineups_winners = []
# total_lineups = len(st.session_state['optimized_df_medians'])
# for idx, row in st.session_state['optimized_df_medians'].iterrows():
# final_lineup = optimize_lineup_winners(row)
# optimized_lineups_winners.append(final_lineup)
# if 'Decrease volatility' in swap_var:
# progress_winners = (idx + 1) / total_lineups
# progress_bar_winners.progress(progress_winners)
# status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Decrease volatility' in swap_var:
# st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns)
# else:
# st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians']
# # Create a progress bar
# progress_bar_losers = st.progress(0)
# status_text_losers = st.empty()
# # Process each lineup
# optimized_lineups_losers = []
# total_lineups = len(st.session_state['optimized_df_winners'])
# for idx, row in st.session_state['optimized_df_winners'].iterrows():
# final_lineup = optimize_lineup_losers(row)
# optimized_lineups_losers.append(final_lineup)
# if 'Increase volatility' in swap_var:
# progress_losers = (idx + 1) / total_lineups
# progress_bar_losers.progress(progress_losers)
# status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Increase volatility' in swap_var:
# st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns)
# else:
# st.session_state['optimized_df'] = st.session_state['optimized_df_winners']
# # Calculate new stats for optimized lineups
# st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# # Display results
# st.success('Optimization complete!')
# if 'optimized_df' in st.session_state:
# st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:")
# st.dataframe(
# st.session_state['optimized_df'].style
# .apply(highlight_changes, axis=1)
# .apply(highlight_changes_winners, axis=1)
# .apply(highlight_changes_losers, axis=1)
# .background_gradient(axis=0)
# .background_gradient(cmap='RdYlGn')
# .format(precision=2),
# height=1000,
# use_container_width=True
# )
# # Option to download optimized lineups
# if st.button('Prepare Late Swap Export'):
# export_df = st.session_state['optimized_df'].copy()
# # Map player names to their export IDs for all player columns
# for col in export_df.columns:
# if col not in ['salary', 'median', 'Own']:
# export_df[col] = export_df[col].map(st.session_state['export_dict'])
# csv = export_df.to_csv(index=False)
# st.download_button(
# label="Download CSV",
# data=csv,
# file_name="optimized_lineups.csv",
# mime="text/csv"
# )
# else:
# st.write("Current Portfolio")
# st.dataframe(
# st.session_state['portfolio'].style
# .background_gradient(axis=0)
# .background_gradient(cmap='RdYlGn')
# .format(precision=2),
# height=1000,
# use_container_width=True
# )
with tab2:
if 'origin_portfolio' in st.session_state and 'projections_df' in st.session_state:
with st.container():
col1, col2 = st.columns(2)
with col1:
if st.button('Reset Portfolio', key='reset_port'):
st.session_state['settings_base'] = True
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
with col2:
with st.form(key='contest_size_form'):
size_col, strength_col, submit_col = st.columns(3)
with size_col:
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
with strength_col:
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
with submit_col:
submitted = st.form_submit_button("Submit Size/Strength")
if submitted:
del st.session_state['working_frame']
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
if 'working_frame' not in st.session_state:
st.session_state['settings_base'] = True
st.session_state['working_frame'] = pd.read_parquet(io.BytesIO(st.session_state['origin_portfolio']))
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
elif sport_var != 'CS2' and sport_var != 'LOL':
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
if 'stack_dict' in st.session_state:
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].index.map(st.session_state['stack_dict'])
st.session_state['working_frame']['Size'] = st.session_state['working_frame'].index.map(st.session_state['size_dict'])
elif type_var == 'Showdown':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# st.session_state['working_frame']['Own'] = st.session_state['working_frame']['Own'].astype('float32')
st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
st.session_state['base_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
# st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
# st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
if 'trimming_dict_maxes' not in st.session_state:
st.session_state['trimming_dict_maxes'] = {
'Own': st.session_state['working_frame']['Own'].max(),
'Geomean': st.session_state['working_frame']['Geomean'].max(),
'Weighted Own': st.session_state['working_frame']['Weighted Own'].max(),
'median': st.session_state['working_frame']['median'].max(),
'Finish_percentile': st.session_state['working_frame']['Finish_percentile'].max(),
'Diversity': st.session_state['working_frame']['Diversity'].max()
}
with st.sidebar:
if 'trimming_dict_maxes' not in st.session_state:
st.session_state['trimming_dict_maxes'] = {
'Own': 500.0,
'Geomean': 500.0,
'Weighted Own': 500.0,
'median': 500.0,
'Finish_percentile': 1.0,
'Diversity': 1.0
}
with st.expander('Macro Filter Options'):
with st.form(key='macro_filter_form'):
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
max_salary = st.number_input("Max acceptable salary?", value=100000, min_value=1000, step=100)
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001)
if sport_var in stacking_sports:
stack_include_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[])
stack_remove_toggle = st.selectbox("Remove specific stacks?", options=['No', 'Yes'], index=0)
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[])
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
parsed_frame = parsed_frame[parsed_frame['Dupes'] <= max_dupes]
parsed_frame = parsed_frame[parsed_frame['salary'] >= min_salary]
parsed_frame = parsed_frame[parsed_frame['salary'] <= max_salary]
parsed_frame = parsed_frame[parsed_frame['Finish_percentile'] <= max_finish_percentile]
parsed_frame = parsed_frame[parsed_frame['Lineup Edge'] >= min_lineup_edge]
if 'Stack' in parsed_frame.columns:
if stack_include_toggle == 'All Stacks':
parsed_frame = parsed_frame
else:
parsed_frame = parsed_frame[parsed_frame['Stack'].isin(stack_selections)]
if stack_remove_toggle == 'Yes':
parsed_frame = parsed_frame[~parsed_frame['Stack'].isin(stack_remove)]
else:
parsed_frame = parsed_frame
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
if exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
parsed_frame = parsed_frame[parsed_frame['Dupes'] <= max_dupes]
parsed_frame = parsed_frame[parsed_frame['salary'] >= min_salary]
parsed_frame = parsed_frame[parsed_frame['salary'] <= max_salary]
parsed_frame = parsed_frame[parsed_frame['Finish_percentile'] <= max_finish_percentile]
parsed_frame = parsed_frame[parsed_frame['Lineup Edge'] >= min_lineup_edge]
if 'Stack' in parsed_frame.columns:
if stack_include_toggle == 'All Stacks':
parsed_frame = parsed_frame
else:
parsed_frame = parsed_frame[parsed_frame['Stack'].isin(stack_selections)]
if stack_remove_toggle == 'Yes':
parsed_frame = parsed_frame[~parsed_frame['Stack'].isin(stack_remove)]
else:
parsed_frame = parsed_frame
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Micro Filter Options'):
with st.form(key='micro_filter_form'):
player_names = set()
for col in st.session_state['working_frame'].columns:
if col not in excluded_cols:
player_names.update(st.session_state['working_frame'][col].unique())
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
team_include = st.multiselect("Include teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
team_remove = st.multiselect("Remove teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
if sport_var in stacking_sports:
size_include = st.multiselect("Include sizes?", options=sorted(list(set(st.session_state['working_frame']['Size'].unique()))), default=[])
else:
size_include = []
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
if player_remove:
# Create mask for lineups that contain any of the removed players
player_columns = [col for col in parsed_frame.columns if col not in excluded_cols]
remove_mask = parsed_frame[player_columns].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if player_lock:
# Create mask for lineups that contain all locked players
player_columns = [col for col in parsed_frame.columns if col not in excluded_cols]
lock_mask = parsed_frame[player_columns].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
parsed_frame = parsed_frame[lock_mask]
if team_include:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in player_columns if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that contain any of the included teams
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
parsed_frame = parsed_frame[include_mask]
if team_remove:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in player_columns if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that don't contain any of the removed teams
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if size_include:
parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)]
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
if player_remove:
# Create mask for lineups that contain any of the removed players
player_columns = [col for col in parsed_frame.columns if col not in excluded_cols]
remove_mask = parsed_frame[player_columns].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if player_lock:
# Create mask for lineups that contain all locked players
player_columns = [col for col in parsed_frame.columns if col not in excluded_cols]
lock_mask = parsed_frame[player_columns].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
parsed_frame = parsed_frame[lock_mask]
if team_include:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in player_columns if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that contain any of the included teams
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
parsed_frame = parsed_frame[include_mask]
if team_remove:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in player_columns if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that don't contain any of the removed teams
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if size_include:
parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)]
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
# with st.expander('Conditional Manager'):
# # a set of functions for removing lineups that contain a conditional between players and stacks
# with st.form(key='conditional_manager_form'):
# player_names = set()
# for col in st.session_state['working_frame'].columns:
# if col not in excluded_cols:
# player_names.update(st.session_state['working_frame'][col].unique())
# conditional_remove_players = st.multiselect("Remove lineups containing player(s):", options=sorted(list(player_names)), default=[])
# conditional_include_players = st.multiselect("If they also contain player(s):", options=sorted(list(player_names)), default=[])
# submitted_col, export_col = st.columns(2)
# st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
# with submitted_col:
# reg_submitted = st.form_submit_button("Portfolio")
# with export_col:
# exp_submitted = st.form_submit_button("Export")
# if reg_submitted:
# st.session_state['settings_base'] = False
# parsed_frame = st.session_state['working_frame'].copy()
# player_columns = [col for col in parsed_frame.columns if col not in excluded_cols]
# # Test with a simpler approach
# include_mask = parsed_frame[player_columns].apply(
# lambda row: all(player in row.values for player in conditional_include_players), axis=1
# )
# remove_mask = parsed_frame[player_columns].apply(
# lambda row: not any(player in row.values for player in conditional_remove_players), axis=1
# )
# parsed_frame = parsed_frame[include_mask & remove_mask]
# st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
# st.session_state['export_merge'] = st.session_state['working_frame'].copy()
# elif exp_submitted:
# st.session_state['settings_base'] = False
# parsed_frame = st.session_state['export_base'].copy()
# player_columns = [col for col in parsed_frame.columns if col not in excluded_cols]
# # Test with a simpler approach
# include_mask = parsed_frame[player_columns].apply(
# lambda row: all(player in row.values for player in conditional_include_players), axis=1
# )
# remove_mask = parsed_frame[player_columns].apply(
# lambda row: not any(player in row.values for player in conditional_remove_players), axis=1
# )
# parsed_frame = parsed_frame[include_mask & remove_mask]
# st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
# st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Trimming Options'):
with st.form(key='trim_form'):
st.write("Sorting and trimming variables:")
perf_var, own_var = st.columns(2)
with perf_var:
performance_type = st.selectbox("Sorting variable", ['median', 'Own', 'Weighted Own'], key='sort_var')
with own_var:
own_type = st.selectbox("Trimming variable", ['Own', 'Geomean', 'Weighted Own', 'Diversity'], key='trim_var')
trim_slack_var = st.number_input("Trim slack (percentile addition to trimming variable ceiling)", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key='trim_slack')
st.write("Sorting threshold range:")
min_sort, max_sort = st.columns(2)
with min_sort:
performance_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_sort')
with max_sort:
performance_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][performance_type]), min_value=0.0, step=1.0, key='max_sort')
st.write("Trimming threshold range:")
min_trim, max_trim = st.columns(2)
with min_trim:
own_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_trim')
with max_trim:
own_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][own_type]), min_value=0.0, step=1.0, key='max_trim')
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
st.write('initiated')
parsed_frame = st.session_state['working_frame'].copy()
parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low)
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low)
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Presets'):
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
with st.form(key='Small Field Preset'):
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Manage Diversity)', 'Hedge Chalk (Manage Leverage)', 'Volatility (Heavy Lineup Edge)'], index=0)
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
if preset_choice == 'Small Field (Heavy Own)':
parsed_frame = small_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Large Field (Manage Diversity)':
parsed_frame = large_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Volatility (Heavy Lineup Edge)':
parsed_frame = volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'], sport_var)
elif preset_choice == 'Reduce Volatility (Manage Own)':
parsed_frame = reduce_volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
if preset_choice == 'Small Field (Heavy Own)':
parsed_frame = small_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Large Field (Manage Diversity)':
parsed_frame = large_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Volatility (Heavy Lineup Edge)':
parsed_frame = volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
parsed_frame = hedging_preset(st.session_state['export_base'], lineup_target, st.session_state['projections_df'], sport_var)
elif preset_choice == 'Reduce Volatility (Manage Own)':
parsed_frame = reduce_volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Stratify'):
with st.form(key='Stratification'):
sorting_choice = st.selectbox("Stat Choice", options=['median', 'Own', 'Weighted Own', 'Geomean', 'Lineup Edge', 'Finish_percentile', 'Diversity'], index=0)
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
strat_sample = st.slider("Sample range", value=[0.0, 100.0], min_value=0.0, max_value=100.0, step=1.0)
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = stratification_function(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1])
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = stratification_function(st.session_state['export_base'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1])
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Exposure Management'):
with st.form(key='Exposures'):
exposure_player = st.selectbox("Player", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), key='exposure_player')
exposure_target = st.number_input("Target Exposure", value=.50, min_value=0.0, max_value=1.0, step=0.01)
if 'Stack' in st.session_state['working_frame'].columns:
exposure_stack_bool = st.selectbox("Maintain Stacks?", options=['Yes', 'No'], index=0)
else:
exposure_stack_bool = 'No'
remove_teams_exposure = st.multiselect("Removed/Locked teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
prior_frame = st.session_state['working_frame'].copy()
parsed_frame = exposure_spread(st.session_state['working_frame'], st.session_state['exposure_player'], exposure_target, exposure_stack_bool, remove_teams_exposure, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports)
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
elif sport_var != 'CS2' and sport_var != 'LOL':
parsed_frame['salary'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
parsed_frame['median'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
parsed_frame['Own'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
if 'stack_dict' in st.session_state:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
if sport_var == 'LOL':
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row) else 0,
axis=1
)
else:
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[2:]) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[2:]) else 0,
axis=1
)
elif type_var == 'Showdown':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
# st.session_state['working_frame']['Own'] = st.session_state['working_frame']['Own'].astype('float32')
st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
# st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
prior_frame = st.session_state['export_base'].copy()
parsed_frame = exposure_spread(st.session_state['export_base'], st.session_state['exposure_player'], exposure_target, exposure_stack_bool, remove_teams_exposure, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports)
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
elif sport_var != 'CS2' and sport_var != 'LOL':
parsed_frame['salary'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
parsed_frame['median'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
parsed_frame['Own'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
if 'stack_dict' in st.session_state:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
if sport_var == 'LOL':
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row) else 0,
axis=1
)
else:
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[2:]) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[2:]) else 0,
axis=1
)
elif type_var == 'Showdown':
if sport_var == 'GOLF':
parsed_frame['salary'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
parsed_frame['median'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
parsed_frame['Own'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
else:
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
# st.session_state['export_base']['Own'] = st.session_state['export_base']['Own'].astype('float32')
st.session_state['export_base']['median'] = st.session_state['export_base']['median'].astype('float32')
st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
# st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.container():
if 'export_base' not in st.session_state:
st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns)
display_frame_source = st.selectbox("Display:", options=['Portfolio', 'Export Base'], key='display_frame_source')
if display_frame_source == 'Portfolio':
st.session_state['display_frame'] = st.session_state['working_frame']
st.session_state['export_file'] = st.session_state['display_frame'].copy()
for col in st.session_state['export_file'].columns:
if col not in excluded_cols:
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict'])
elif display_frame_source == 'Export Base':
st.session_state['display_frame'] = st.session_state['export_base']
st.session_state['export_file'] = st.session_state['display_frame'].copy()
for col in st.session_state['export_file'].columns:
if col not in excluded_cols:
# Create position-specific export dictionary on the fly
position_dict = create_position_export_dict(col, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(position_dict)
if 'export_file' in st.session_state:
download_port, merge_port, partial_col, clear_export, blank_export_col = st.columns([1, 1, 1, 1, 8])
with download_port:
st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
with merge_port:
if st.button("Add all to Custom Export"):
st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['export_merge']])
st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates()
st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True)
with partial_col:
if 'export_merge' in st.session_state:
select_custom_index = st.number_input("Select rows to add (from top)", min_value=0, max_value=len(st.session_state['export_merge']), value=0)
if st.button("Add selected to Custom Export"):
st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['export_merge'].head(select_custom_index)])
st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates()
st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True)
with clear_export:
if st.button("Clear Custom Export"):
st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns)
if display_frame_source == 'Portfolio':
st.session_state['display_frame'] = st.session_state['working_frame']
elif display_frame_source == 'Export Base':
st.session_state['display_frame'] = st.session_state['export_base']
total_rows = len(st.session_state['display_frame'])
rows_per_page = 100
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division
# Initialize page number in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Display current page range info and pagination control in a single line
st.write(
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
)
# Add page number input
st.session_state.current_page = st.number_input(
f"Page (1-{total_pages})",
min_value=1,
max_value=total_pages,
value=st.session_state.current_page
)
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
# Get the subset of data for the current page
current_page_data = st.session_state['display_frame'].iloc[start_idx:end_idx]
# Display the paginated dataframe first
st.dataframe(
current_page_data.style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
.format(freq_format, precision=2),
column_config={
"Finish_percentile": st.column_config.NumberColumn(
"Finish%",
help="Projected finishing percentile",
width="small",
min_value=0.0,
max_value=1.0
),
"Lineup Edge": st.column_config.NumberColumn(
"Edge",
help="Projected lineup edge",
width="small",
min_value=-1.0,
max_value=1.0
),
"Diversity": st.column_config.NumberColumn(
"Diversity",
help="Projected lineup diversity",
width="small",
min_value=0.0,
max_value=1.0
),
},
height=499,
use_container_width=True,
hide_index=True
)
player_stats_col, stack_stats_col, combos_col = st.tabs(['Player Stats', 'Stack Stats', 'Combos'])
with player_stats_col:
if st.button("Analyze Players", key='analyze_players'):
player_stats = []
player_columns = [col for col in st.session_state['display_frame'].columns if col not in excluded_cols]
if st.session_state['settings_base'] and 'origin_player_exposures' in st.session_state and display_frame_source == 'Portfolio':
st.session_state['player_summary'] = st.session_state['origin_player_exposures']
else:
if type_var == 'Showdown':
if sport_var == 'GOLF':
for player in player_names:
player_mask = st.session_state['display_frame'][player_columns].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Lineup Count': player_mask.sum(),
'Exposure': player_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(),
})
else:
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['display_frame'][player_columns[0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Lineup Count': cpt_mask.sum(),
'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['display_frame'][player_columns[1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Lineup Count': flex_mask.sum(),
'Exposure': flex_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(),
})
else:
if sport_var == 'CS2' or sport_var == 'LOL':
# Handle Captain positions
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['display_frame'][player_columns[0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Lineup Count': cpt_mask.sum(),
'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['display_frame'][player_columns[1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Lineup Count': flex_mask.sum(),
'Exposure': flex_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(),
})
elif sport_var != 'CS2' and sport_var != 'LOL':
# Original Classic format processing
for player in player_names:
player_mask = st.session_state['display_frame'][player_columns].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Lineup Count': player_mask.sum(),
'Exposure': player_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(),
})
player_summary = pd.DataFrame(player_stats)
player_summary = player_summary.sort_values('Lineup Count', ascending=False)
st.session_state['player_summary'] = player_summary.copy()
if 'origin_player_exposures' not in st.session_state:
st.session_state['origin_player_exposures'] = player_summary.copy()
st.subheader("Player Summary")
st.dataframe(
st.session_state['player_summary'].style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}'
}),
height=400,
use_container_width=True
)
with stack_stats_col:
if 'Stack' in st.session_state['display_frame'].columns:
if st.button("Analyze Stacks", key='analyze_stacks'):
stack_stats = []
stack_columns = [col for col in st.session_state['display_frame'].columns if col.startswith('Stack')]
if st.session_state['settings_base'] and 'origin_stack_exposures' in st.session_state and display_frame_source == 'Portfolio':
st.session_state['stack_summary'] = st.session_state['origin_stack_exposures']
else:
for stack in st.session_state['stack_dict'].values():
stack_mask = st.session_state['display_frame']['Stack'] == stack
if stack_mask.any():
stack_stats.append({
'Stack': stack,
'Lineup Count': stack_mask.sum(),
'Exposure': stack_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][stack_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][stack_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][stack_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][stack_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][stack_mask]['Lineup Edge'].mean(),
})
stack_summary = pd.DataFrame(stack_stats)
stack_summary = stack_summary.sort_values('Lineup Count', ascending=False).drop_duplicates()
st.session_state['stack_summary'] = stack_summary.copy()
if 'origin_stack_exposures' not in st.session_state:
st.session_state['origin_stack_exposures'] = stack_summary.copy()
st.subheader("Stack Summary")
st.dataframe(
st.session_state['stack_summary'].style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}'
}),
height=400,
use_container_width=True
)
else:
stack_summary = pd.DataFrame(columns=['Stack', 'Lineup Count', 'Avg Median', 'Avg Own', 'Avg Dupes', 'Avg Finish %', 'Avg Lineup Edge'])
with combos_col:
st.subheader("Player Combinations")
# Add controls for combo analysis
col1, col2 = st.columns(2)
with col1:
combo_size = st.selectbox("Combo Size", [2, 3], key='combo_size')
with col2:
if st.button("Analyze Combos", key='analyze_combos'):
st.session_state['combo_analysis'] = analyze_player_combos(
st.session_state['display_frame'], excluded_cols, combo_size
)
# Display results
if 'combo_analysis' in st.session_state:
st.dataframe(
st.session_state['combo_analysis'].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}'
}),
height=400,
use_container_width=True
)
else:
st.info("Click 'Analyze Combos' to see the most common player combinations.")