|
import pandas as pd |
|
import numpy as np |
|
|
|
def stratification_function(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str, sorting_choice: str): |
|
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity'] |
|
player_columns = [col for col in portfolio.columns if col not in excluded_cols] |
|
|
|
concat_portfolio = portfolio.copy() |
|
if sorting_choice == 'Finish_percentile': |
|
concat_portfolio = concat_portfolio.sort_values(by=sorting_choice, ascending=True).reset_index(drop=True) |
|
else: |
|
concat_portfolio = concat_portfolio.sort_values(by=sorting_choice, ascending=False).reset_index(drop=True) |
|
|
|
|
|
similarity_floor = concat_portfolio[sorting_choice].min() |
|
similarity_ceiling = concat_portfolio[sorting_choice].max() |
|
|
|
|
|
target_similarities = np.linspace(similarity_floor, similarity_ceiling, lineup_target) |
|
|
|
|
|
selected_indices = [] |
|
for target_sim in target_similarities: |
|
|
|
closest_idx = (concat_portfolio[sorting_choice] - target_sim).abs().idxmin() |
|
if closest_idx not in selected_indices: |
|
selected_indices.append(closest_idx) |
|
|
|
|
|
concat_portfolio = concat_portfolio.loc[selected_indices].reset_index(drop=True) |
|
|
|
return concat_portfolio.sort_values(by=sorting_choice, ascending=False) |
|
|