File size: 5,998 Bytes
a35b524
 
 
 
d9db89f
9d66c9c
a35b524
 
 
 
ad242a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa4569
ad242a2
bfa4569
ad242a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b524
 
9d66c9c
 
 
a35b524
9d66c9c
a35b524
 
9d66c9c
dbc3f23
a35b524
cadc1d7
 
 
ad242a2
 
 
cadc1d7
a35b524
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
import numpy as np
import pandas as pd
import time
from rapidfuzz import process
import re

## import global functions
from global_func.clean_player_name import clean_player_name

sport_headers = {
    'Draftkings': {
        'Classic' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'DRIVER1', 'DRIVER2', 'DRIVER3', 'DRIVER4', 'CONST'],
            'SOC' : ['F1', 'F2', 'M1', 'M2', 'D1', 'D2', 'GK', 'UTIL'],
            'TENNIS' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'WNBA' : ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL'],
            'NASCAR' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'MLB' : ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'],
            'NFL' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'],
            'CFL' : ['QB', 'RB', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST'],
            'LOL' : ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
            'CSGO' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'COD' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'TEAM'],
            'NHL' : ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G'],
            'NCAAF' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
        },
        'Showdown' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'SOC' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'TENNIS' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'WNBA' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NASCAR' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'MLB' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'CFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'LOL' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'CSGO' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'COD' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'NHL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NCAAF' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
        },
    },
    'Fanduel': {
        'Classic' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'DRIVER1', 'DRIVER2', 'DRIVER3', 'DRIVER4', 'CONST'],
            'SOC' : ['F1', 'F2', 'M1', 'M2', 'D1', 'D2', 'GK', 'UTIL'],
            'TENNIS' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'WNBA' : ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4'],
            'NASCAR' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'MLB' : ['P', 'C/1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'],
            'NFL' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'],
            'CFL' : ['QB', 'RB', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST'],
            'LOL' : ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
            'CSGO' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'COD' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'TEAM'],
            'NHL' : ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G'],
            'NCAAF' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
        },
        'Showdown' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'SOC' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'TENNIS' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'WNBA' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NASCAR' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'MLB' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'CFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'LOL' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'CSGO' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'COD' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'NHL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NCAAF' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
        },
    },
}

def load_file(upload, site_var, type_var, sport_var, upload_type):
    if upload is not None:
        try:
            clean_name = re.sub(r' \(\d+\)', '', upload.name)
            
            if clean_name.endswith('.csv'):
                df = pd.read_csv(upload)
            elif clean_name.endswith(('.xls', '.xlsx')):
                df = pd.read_excel(upload)
            else:
                st.error('Please upload either a CSV or Excel file')
                return None, None
            
            for col in df.columns:
                if "Unnamed" in col:
                    df = df.drop(columns=[col])

            if upload_type == 'portfolio':
                df.columns = sport_headers[site_var][type_var][sport_var]
            
            export_df = df.copy()
            
            for col in df.columns:
                if df[col].dtype == 'object':
                    df[col] = df[col].apply(lambda x: clean_player_name(x) if isinstance(x, str) else x)
            
            return export_df, df
        except Exception as e:
            st.error(f'Error loading file: {str(e)}')
            return None
    return None