File size: 6,447 Bytes
7852820
 
 
 
d9db89f
ba217a9
7852820
ad242a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa4569
ad242a2
bfa4569
ad242a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7852820
 
 
 
 
 
 
 
ba217a9
 
9d66c9c
ba217a9
9d66c9c
7852820
 
 
 
cee1912
 
 
 
 
 
ad242a2
 
7852820
 
 
 
b6cd6af
 
 
 
 
 
 
 
 
 
 
 
7852820
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
import numpy as np
import pandas as pd
import time
from rapidfuzz import process
import re

sport_headers = {
    'Draftkings': {
        'Classic' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'DRIVER1', 'DRIVER2', 'DRIVER3', 'DRIVER4', 'CONST'],
            'SOC' : ['F1', 'F2', 'M1', 'M2', 'D1', 'D2', 'GK', 'UTIL'],
            'TENNIS' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'WNBA' : ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL'],
            'NASCAR' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'MLB' : ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'],
            'NFL' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'],
            'CFL' : ['QB', 'RB', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST'],
            'LOL' : ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
            'CSGO' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'COD' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'TEAM'],
            'NHL' : ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G'],
            'NCAAF' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
        },
        'Showdown' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'SOC' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'TENNIS' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'WNBA' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NASCAR' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'MLB' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'CFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'LOL' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'CSGO' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'COD' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'NHL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NCAAF' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
        },
    },
    'Fanduel': {
        'Classic' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'DRIVER1', 'DRIVER2', 'DRIVER3', 'DRIVER4', 'CONST'],
            'SOC' : ['F1', 'F2', 'M1', 'M2', 'D1', 'D2', 'GK', 'UTIL'],
            'TENNIS' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'WNBA' : ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4'],
            'NASCAR' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'MLB' : ['P', 'C/1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'],
            'NFL' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'],
            'CFL' : ['QB', 'RB', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST'],
            'LOL' : ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
            'CSGO' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'COD' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'TEAM'],
            'NHL' : ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G'],
            'NCAAF' : ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
        },
        'Showdown' : {
            'MMA' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'GOLF' : ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'],
            'F1' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'SOC' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'TENNIS' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'WNBA' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NASCAR' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'MLB' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'CFL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'LOL' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'CSGO' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'COD' : ['CPT1', 'CPT2', 'FLEX1', 'FLEX2'],
            'NHL' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
            'NCAAF' : ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
        },
    },
}

def load_dk_fd_file(lineups, csv_file, site_var, type_var, sport_var):
    df = csv_file.copy()
    try:
        name_dict = dict(zip(df['Name + ID'], df['Name']))
    except:
        name_dict = dict(zip(df['Id'], df['Nickname']))

    # Now load and process the lineups file
    try:
        clean_name = re.sub(r' \(\d+\)', '', lineups.name)
        
        if clean_name.endswith('.csv'):
            lineups_df = pd.read_csv(lineups)
        elif clean_name.endswith(('.xls', '.xlsx')):
            lineups_df = pd.read_excel(lineups)
        else:
            st.error('Please upload either a CSV or Excel file for lineups')
            return None, None

        try:
            lineups_df = lineups_df.drop(columns=['Entry ID', 'Contest Name', 'Contest ID', 'Entry Fee'])
        except:
            pass

        lineups_df.columns = sport_headers[site_var][type_var][sport_var]

        export_df = lineups_df.copy()
        
        # Map the IDs to names
        for col in lineups_df.columns:
            def map_or_clean(value):
                # First try to map using the dictionary
                if value in name_dict:
                    return name_dict[value]
                else:
                    # If no match found, remove the ID portion
                    match = re.search(r' \(', str(value))
                    if match:
                        return str(value)[:match.start()]
                    return value
            
            lineups_df[col] = lineups_df[col].apply(map_or_clean)
        
        return export_df, lineups_df
        
    except Exception as e:
        st.error(f'Error loading lineups file: {str(e)}')
        return None, None