File size: 37,772 Bytes
a35b524
 
 
 
c7e2afa
4390bf0
a35b524
46a28f1
5dc36a5
46a28f1
5dc36a5
 
46a28f1
5dc36a5
 
46a28f1
5dc36a5
46a28f1
 
f978f29
46a28f1
 
5dc36a5
 
46a28f1
5dc36a5
 
46a28f1
5dc36a5
 
46a28f1
5dc36a5
46a28f1
 
 
 
5dc36a5
46a28f1
606905f
5dc36a5
46a28f1
dd908a8
46a28f1
dd908a8
 
46a28f1
dd908a8
 
46a28f1
 
 
 
 
 
 
dd908a8
46a28f1
 
 
 
dd908a8
1fe4ec0
 
46a28f1
 
1fe4ec0
 
 
 
 
 
039bb05
 
 
 
 
46a28f1
 
 
039bb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a28f1
039bb05
46a28f1
039bb05
dd908a8
46a28f1
 
 
 
dd908a8
 
 
46a28f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f2b9c
46a28f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd90e32
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c283108
dd908a8
c283108
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
46a28f1
a35b524
46a28f1
 
 
 
 
 
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6e753
a35b524
 
 
 
c283108
dd908a8
c283108
a35b524
 
46a28f1
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a28f1
 
 
 
 
 
a35b524
c283108
dd908a8
46a28f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b524
 
 
46a28f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b524
46a28f1
 
 
 
 
 
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6e753
b53e467
8b35df7
 
bd90e32
c283108
dd908a8
c283108
bd90e32
 
 
 
8b35df7
 
bd90e32
 
 
 
 
 
 
 
 
8b35df7
bd90e32
46a28f1
 
 
 
 
 
bd90e32
 
 
 
 
b53e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd90e32
 
 
 
 
 
 
 
 
 
 
17b7fee
bd90e32
 
 
 
c283108
dd908a8
c283108
bd90e32
 
46a28f1
bd90e32
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b524
 
 
 
 
 
 
 
 
17b7fee
58073a4
17b7fee
58073a4
a35b524
 
 
4d63f87
7905ae8
a35b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a28f1
50fa4f0
c283108
 
46a28f1
c283108
a35b524
 
 
46a28f1
 
 
 
 
64ed14c
 
46a28f1
 
 
64064b9
 
46a28f1
64064b9
 
46a28f1
 
a35b524
46a28f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import streamlit as st
import numpy as np
import pandas as pd
import time
import math
from difflib import SequenceMatcher

def calculate_weighted_ownership_vectorized(ownership_array):
    """
    Vectorized version of calculate_weighted_ownership using NumPy operations.
    
    Args:
        ownership_array: 2D array of ownership values (rows x players)
        
    Returns:
        array: Calculated weighted ownership values for each row
    """
    # Convert percentages to decimals and handle NaN values
    ownership_array = np.where(np.isnan(ownership_array), 0, ownership_array) / 100
    
    # Calculate row means
    row_means = np.mean(ownership_array, axis=1, keepdims=True)
    
    # Calculate average of each value with the overall mean
    value_means = (ownership_array + row_means) / 2
    
    # Take average of all those means
    avg_of_means = np.mean(value_means, axis=1)
    
    # Multiply by count of values
    weighted = avg_of_means * ownership_array.shape[1]
    
    # Subtract (max - min) for each row
    row_max = np.max(ownership_array, axis=1)
    row_min = np.min(ownership_array, axis=1)
    weighted = weighted - (row_max - row_min)
    
    # Convert back to percentage form
    return weighted * 10000

def calculate_weighted_ownership_wrapper(row_ownerships):
    """
    Wrapper function for the original calculate_weighted_ownership to work with Pandas .apply()
    
    Args:
        row_ownerships: Series containing ownership values in percentage form
        
    Returns:
        float: Calculated weighted ownership value
    """
    # Convert Series to 2D array for vectorized function
    ownership_array = row_ownerships.values.reshape(1, -1)
    return calculate_weighted_ownership_vectorized(ownership_array)[0]

def calculate_player_similarity_score_vectorized(portfolio, player_columns):
    """
    Vectorized version of calculate_player_similarity_score using NumPy operations.
    """
    # Extract player data and convert to string array
    player_data = portfolio[player_columns].astype(str).fillna('').values
    
    # Get all unique players and create a mapping to numeric IDs
    all_players = set()
    for row in player_data:
        for val in row:
            if isinstance(val, str) and val.strip() != '':
                all_players.add(val)
    
    # Create player ID mapping
    player_to_id = {player: idx for idx, player in enumerate(sorted(all_players))}
    
    # Convert each row to a binary vector (1 if player is present, 0 if not)
    n_players = len(all_players)
    n_rows = len(portfolio)
    binary_matrix = np.zeros((n_rows, n_players), dtype=np.int8)
    
    # Vectorized binary matrix creation
    for i, row in enumerate(player_data):
        for val in row:
            if isinstance(val, str) and str(val).strip() != '' and str(val) in player_to_id:
                binary_matrix[i, player_to_id[str(val)]] = 1
    
    # Vectorized Jaccard distance calculation
    intersection_matrix = np.dot(binary_matrix, binary_matrix.T)
    row_sums = np.sum(binary_matrix, axis=1)
    union_matrix = row_sums[:, np.newaxis] + row_sums - intersection_matrix
    
    # Calculate Jaccard distance: 1 - (intersection / union)
    with np.errstate(divide='ignore', invalid='ignore'):
        jaccard_similarity = np.divide(intersection_matrix, union_matrix, 
                                     out=np.zeros_like(intersection_matrix, dtype=float), 
                                     where=union_matrix != 0)
    
    jaccard_distance = 1 - jaccard_similarity
    
    # Exclude self-comparison and calculate average distance for each row
    np.fill_diagonal(jaccard_distance, 0)
    row_counts = n_rows - 1
    similarity_scores = np.sum(jaccard_distance, axis=1) / row_counts
    
    # Normalize to 0-1 scale
    score_range = similarity_scores.max() - similarity_scores.min()
    if score_range > 0:
        similarity_scores = (similarity_scores - similarity_scores.min()) / score_range
    
    return similarity_scores

def predict_dupes_vectorized(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var):
    """
    Vectorized version of predict_dupes using NumPy arrays for better performance.
    """
    # Set multipliers based on strength
    if strength_var == 'Weak':
        dupes_multiplier = 0.75
        percentile_multiplier = 0.90
    elif strength_var == 'Average':
        dupes_multiplier = 1.00
        percentile_multiplier = 1.00
    elif strength_var == 'Sharp':
        dupes_multiplier = 1.25
        percentile_multiplier = 1.10
    
    max_ownership = max(maps_dict['own_map'].values()) / 100
    average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
    
    # Convert portfolio to NumPy arrays for faster operations
    portfolio_values = portfolio.values
    n_rows = len(portfolio)
    
    # Pre-allocate arrays for ownership data
    if site_var == 'Fanduel':
        if type_var == 'Showdown':
            num_players = 5
            salary_cap = 60000
            player_cols = list(range(5))  # First 5 columns are players
        elif type_var == 'Classic':
            if sport_var == 'WNBA':
                num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
                salary_cap = 40000
                player_cols = list(range(num_players))
            else:
                num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
                salary_cap = 60000
                player_cols = list(range(num_players))
    elif site_var == 'Draftkings':
        if type_var == 'Showdown':
            num_players = 6
            salary_cap = 50000
            player_cols = list(range(6))
        elif type_var == 'Classic':
            if sport_var == 'CS2':
                num_players = 6
                salary_cap = 50000
                player_cols = list(range(6))
            else:
                num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
                salary_cap = 50000
                player_cols = list(range(num_players))
    
    # Pre-allocate ownership arrays
    ownership_array = np.zeros((n_rows, num_players), dtype=np.float32)
    ownership_rank_array = np.zeros((n_rows, num_players), dtype=np.float32)
    
    # Vectorized ownership mapping
    for i, col_idx in enumerate(player_cols):
        if i == 0 and type_var == 'Showdown':  # Captain
            ownership_array[:, i] = np.vectorize(lambda x: maps_dict['cpt_own_map'].get(x, 0))(portfolio_values[:, col_idx]) / 100
            ownership_rank_array[:, i] = np.vectorize(lambda x: maps_dict['cpt_own_map'].get(x, 0))(portfolio_values[:, col_idx])
        else:  # Flex players
            ownership_array[:, i] = np.vectorize(lambda x: maps_dict['own_map'].get(x, 0))(portfolio_values[:, col_idx]) / 100
            ownership_rank_array[:, i] = np.vectorize(lambda x: maps_dict['own_map'].get(x, 0))(portfolio_values[:, col_idx])
    
    # Calculate ranks for flex players (excluding captain)
    if type_var == 'Showdown':
        flex_ownerships = ownership_rank_array[:, 1:].flatten()
        flex_rank = pd.Series(flex_ownerships).rank(pct=True).values.reshape(n_rows, -1)
        ownership_rank_array[:, 1:] = flex_rank
    
    # Convert to percentile ranks
    ownership_rank_array = ownership_rank_array / 100
    
    # Vectorized calculations
    own_product = np.prod(ownership_array, axis=1)
    own_average = (portfolio_values[:, portfolio.columns.get_loc('Own')].max() * 0.33) / 100
    own_sum = np.sum(ownership_array, axis=1)
    avg_own_rank = np.mean(ownership_rank_array, axis=1)
    
    # Calculate dupes formula vectorized
    salary_col = portfolio.columns.get_loc('salary')
    own_col = portfolio.columns.get_loc('Own')
    
    dupes_calc = (own_product * avg_own_rank) * Contest_Size + \
                 ((portfolio_values[:, salary_col] - (salary_cap - portfolio_values[:, own_col])) / 100) - \
                 ((salary_cap - portfolio_values[:, salary_col]) / 100)
    
    dupes_calc *= dupes_multiplier
    
    # Round and handle negative values
    dupes = np.where(np.round(dupes_calc, 0) <= 0, 0, np.round(dupes_calc, 0) - 1)
    
    # Calculate own_ratio vectorized
    max_own_mask = np.any(ownership_array == max_ownership, axis=1)
    own_ratio = np.where(max_own_mask, 
                         own_sum / own_average,
                         (own_sum - max_ownership) / own_average)
    
    # Calculate Finish_percentile vectorized
    percentile_cut_scalar = portfolio_values[:, portfolio.columns.get_loc('median')].max()
    
    if type_var == 'Classic':
        own_ratio_nerf = 2 if sport_var == 'CS2' or sport_var == 'LOL' else 1.5
    elif type_var == 'Showdown':
        own_ratio_nerf = 1.5
    
    median_col = portfolio.columns.get_loc('median')
    finish_percentile = (own_ratio - own_ratio_nerf) / ((5 * (portfolio_values[:, median_col] / percentile_cut_scalar)) / 3)
    finish_percentile = np.where(finish_percentile < 0.0005, 0.0005, finish_percentile / 2)
    
    # Calculate other metrics vectorized
    ref_proj = portfolio_values[:, median_col].max()
    max_proj = ref_proj + 10
    min_proj = ref_proj - 10
    avg_ref = (max_proj + min_proj) / 2
    
    win_percent = (((portfolio_values[:, median_col] / avg_ref) - (0.1 + ((ref_proj - portfolio_values[:, median_col])/100))) / (Contest_Size / 1000)) / 10
    max_allowed_win = (1 / Contest_Size) * 5
    win_percent = win_percent / win_percent.max() * max_allowed_win
    
    finish_percentile = finish_percentile + 0.005 + (0.005 * (Contest_Size / 10000))
    finish_percentile *= percentile_multiplier
    win_percent *= (1 - finish_percentile)
    
    # Calculate low ownership count vectorized
    low_own_count = np.sum(ownership_array < 0.10, axis=1)
    finish_percentile = np.where(low_own_count <= 0, 
                                finish_percentile, 
                                finish_percentile / low_own_count)
    
    # Calculate Lineup Edge vectorized
    lineup_edge = win_percent * ((0.5 - finish_percentile) * (Contest_Size / 2.5))
    lineup_edge = np.where(dupes > 0, lineup_edge / (dupes + 1), lineup_edge)
    lineup_edge = lineup_edge - lineup_edge.mean()
    
    # Calculate Weighted Own vectorized
    weighted_own = calculate_weighted_ownership_vectorized(ownership_array)
    
    # Calculate Geomean vectorized
    geomean = np.power(np.prod(ownership_array * 100, axis=1), 1 / num_players)
    
    # Calculate Diversity vectorized
    diversity = calculate_player_similarity_score_vectorized(portfolio, player_cols)
    
    # Create result DataFrame with optimized data types
    result_data = {
        'Dupes': dupes.astype('uint16'),
        'median': portfolio_values[:, portfolio.columns.get_loc('median')].astype('float32'),
        'Own': portfolio_values[:, portfolio.columns.get_loc('Own')].astype('float32'),
        'salary': portfolio_values[:, portfolio.columns.get_loc('salary')].astype('uint16'),
        'Finish_percentile': finish_percentile.astype('float32'),
        'Win%': win_percent.astype('float32'),
        'Lineup Edge': lineup_edge.astype('float32'),
        'Weighted Own': weighted_own.astype('float32'),
        'Geomean': geomean.astype('float32'),
        'Diversity': diversity.astype('float32')
    }
    
    # Add Size column if it exists
    if 'Size' in portfolio.columns:
        result_data['Size'] = portfolio_values[:, portfolio.columns.get_loc('Size')].astype('uint16')
    
    # Add player columns back
    for i, col_name in enumerate(portfolio.columns[:num_players]):
        result_data[col_name] = portfolio_values[:, i]
    
    return pd.DataFrame(result_data)

# Keep the original function for backward compatibility
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var):
    if strength_var == 'Weak':
        dupes_multiplier = .75
        percentile_multiplier = .90
    elif strength_var == 'Average':
        dupes_multiplier = 1.00
        percentile_multiplier = 1.00
    elif strength_var == 'Sharp':
        dupes_multiplier = 1.25
        percentile_multiplier = 1.10
    max_ownership = max(maps_dict['own_map'].values()) / 100
    average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
    if site_var == 'Fanduel':
        if type_var == 'Showdown':
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first 5 columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:5] if col not in ['salary', 'median', 'Own']]
            
            flex_ownerships = pd.concat([
                portfolio.iloc[:,1].map(maps_dict['own_map']),
                portfolio.iloc[:,2].map(maps_dict['own_map']),
                portfolio.iloc[:,3].map(maps_dict['own_map']),
                portfolio.iloc[:,4].map(maps_dict['own_map'])
            ])
            flex_rank = flex_ownerships.rank(pct=True)
            
            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )
        elif type_var == 'Classic':
            num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
            dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
            own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first num_players columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']]
            
            for i in range(1, num_players + 1):
                portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )

    elif site_var == 'Draftkings':
        if type_var == 'Showdown':
            if sport_var == 'GOLF':
                dup_count_columns = ['FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank', 'FLEX6_Own_percent_rank']
                own_columns = ['FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own', 'FLEX6_Own']
            else:
                dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
                own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first 6 columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]
            if sport_var == 'GOLF':
                flex_ownerships = pd.concat([
                    portfolio.iloc[:,0].map(maps_dict['own_map']),
                    portfolio.iloc[:,1].map(maps_dict['own_map']),
                    portfolio.iloc[:,2].map(maps_dict['own_map']),
                    portfolio.iloc[:,3].map(maps_dict['own_map']),
                    portfolio.iloc[:,4].map(maps_dict['own_map']),
                    portfolio.iloc[:,5].map(maps_dict['own_map'])
                ])
            else:
                flex_ownerships = pd.concat([
                    portfolio.iloc[:,1].map(maps_dict['own_map']),
                    portfolio.iloc[:,2].map(maps_dict['own_map']),
                    portfolio.iloc[:,3].map(maps_dict['own_map']),
                    portfolio.iloc[:,4].map(maps_dict['own_map']),
                    portfolio.iloc[:,5].map(maps_dict['own_map'])
                ])
            flex_rank = flex_ownerships.rank(pct=True)
            
            # Assign ranks back to individual columns using the same rank scale
            if sport_var == 'GOLF':
                portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX6_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

                portfolio['FLEX1_Own'] = portfolio.iloc[:,0].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX2_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX3_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX4_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX5_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX6_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
            else:    
                portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
                portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

                portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
                portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100

            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier

            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )
        elif type_var == 'Classic':
            if sport_var == 'CS2':
                dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
                own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
                calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
                # Get the original player columns (first 6 columns excluding salary, median, Own)
                player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]
                
                flex_ownerships = pd.concat([
                    portfolio.iloc[:,1].map(maps_dict['own_map']),
                    portfolio.iloc[:,2].map(maps_dict['own_map']),
                    portfolio.iloc[:,3].map(maps_dict['own_map']),
                    portfolio.iloc[:,4].map(maps_dict['own_map']),
                    portfolio.iloc[:,5].map(maps_dict['own_map'])
                ])
                flex_rank = flex_ownerships.rank(pct=True)
                
                # Assign ranks back to individual columns using the same rank scale
                portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
                portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

                portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
                portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100

                portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
                portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
                portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
                portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
                
                # Calculate dupes formula
                portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
                portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier

                # Round and handle negative values
                portfolio['Dupes'] = np.where(
                    np.round(portfolio['dupes_calc'], 0) <= 0,
                    0, 
                    np.round(portfolio['dupes_calc'], 0) - 1
                )
            if sport_var == 'LOL':
                dup_count_columns = ['CPT_Own_percent_rank', 'TOP_Own_percent_rank', 'JNG_Own_percent_rank', 'MID_Own_percent_rank', 'ADC_Own_percent_rank', 'SUP_Own_percent_rank', 'Team_Own_percent_rank']
                own_columns = ['CPT_Own', 'TOP_Own', 'JNG_Own', 'MID_Own', 'ADC_Own', 'SUP_Own', 'Team_Own']
                calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
                # Get the original player columns (first 6 columns excluding salary, median, Own)
                player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]
                
                flex_ownerships = pd.concat([
                    portfolio.iloc[:,1].map(maps_dict['own_map']),
                    portfolio.iloc[:,2].map(maps_dict['own_map']),
                    portfolio.iloc[:,3].map(maps_dict['own_map']),
                    portfolio.iloc[:,4].map(maps_dict['own_map']),
                    portfolio.iloc[:,5].map(maps_dict['own_map']),
                    portfolio.iloc[:,6].map(maps_dict['own_map'])
                ])
                flex_rank = flex_ownerships.rank(pct=True)
                
                # Assign ranks back to individual columns using the same rank scale
                portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
                portfolio['TOP_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['JNG_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['MID_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['ADC_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['SUP_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
                portfolio['Team_Own_percent_rank'] = portfolio.iloc[:,6].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

                portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
                portfolio['TOP_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['JNG_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['MID_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['ADC_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['SUP_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
                portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100

                portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
                portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
                portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
                portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
                
                # Calculate dupes formula
                portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
                portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier

                # Round and handle negative values
                portfolio['Dupes'] = np.where(
                    np.round(portfolio['dupes_calc'], 0) <= 0,
                    0, 
                    np.round(portfolio['dupes_calc'], 0) - 1
                )
            elif sport_var != 'CS2' and sport_var != 'LOL':
                num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
                dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
                own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
                calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
                # Get the original player columns (first num_players columns excluding salary, median, Own)
                player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']]
                
                for i in range(1, num_players + 1):
                    portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                    portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100
                
                portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
                portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
                portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
                portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
                
                portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
                portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
                # Round and handle negative values
                portfolio['Dupes'] = np.where(
                    np.round(portfolio['dupes_calc'], 0) <= 0,
                    0, 
                    np.round(portfolio['dupes_calc'], 0) - 1
                )

    portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
    portfolio['own_ratio'] = np.where(
        portfolio[own_columns].isin([max_ownership]).any(axis=1),
        portfolio['own_sum'] / portfolio['own_average'],
        (portfolio['own_sum'] - max_ownership) / portfolio['own_average']
    )
    percentile_cut_scalar = portfolio['median'].max()  # Get scalar value
    if type_var == 'Classic':
        if sport_var == 'CS2' or sport_var == 'LOL':
            own_ratio_nerf = 2
        elif sport_var != 'CS2' and sport_var != 'LOL':
            own_ratio_nerf = 1.5
    elif type_var == 'Showdown':
        own_ratio_nerf = 1.5
    portfolio['Finish_percentile'] = portfolio.apply(
        lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3) < .0005 
        else ((row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3)) / 2, 
        axis=1
    )
    
    portfolio['Ref_Proj'] = portfolio['median'].max()
    portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
    portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
    portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
    portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
    max_allowed_win = (1 / Contest_Size) * 5
    portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
    
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier
    portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
    
    portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
    portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
    portfolio['Lineup Edge'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
    portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
    portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
    portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
    portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
    
    # Calculate similarity score based on actual player selection
    portfolio['Diversity'] = calculate_player_similarity_score_vectorized(portfolio, player_columns)
    
    portfolio = portfolio.drop(columns=dup_count_columns)
    portfolio = portfolio.drop(columns=own_columns)
    portfolio = portfolio.drop(columns=calc_columns)
    
    int16_columns_stacks = ['Dupes', 'Size', 'salary']
    int16_columns_nstacks = ['Dupes', 'salary']
    float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']

    print(portfolio.columns)
    print(portfolio.head(10))
    try:
        portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
    except:
        pass
    try:
        portfolio[int16_columns_nstacks] = portfolio[int16_columns_nstacks].astype('uint16')
    except:
        pass

    portfolio[float32_columns] = portfolio[float32_columns].astype('float32')

    return portfolio