James McCool
		
	commited on
		
		
					Commit 
							
							·
						
						5b2d759
	
1
								Parent(s):
							
							55a9933
								
Add WNBA support for contest file loading
Browse files- Implemented specific handling for WNBA lineups in the load_contest_file function, allowing for the correct parsing of player positions and lineup structure.
- Updated the DataFrame processing to accommodate WNBA-specific columns, enhancing the application's functionality for users participating in WNBA contests.
    	
        global_func/load_contest_file.py
    CHANGED
    
    | 
         @@ -113,6 +113,8 @@ def load_contest_file(upload, type, helper = None, sport = None): 
     | 
|
| 113 | 
         
             
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True)
         
     | 
| 114 | 
         
             
                            elif sport == 'GOLF':
         
     | 
| 115 | 
         
             
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
         
     | 
| 
         | 
|
| 
         | 
|
| 116 | 
         
             
                            print(sport)
         
     | 
| 117 | 
         
             
                            check_lineups = cleaned_df.copy()
         
     | 
| 118 | 
         
             
                            if sport == 'MLB':
         
     | 
| 
         @@ -121,6 +123,8 @@ def load_contest_file(upload, type, helper = None, sport = None): 
     | 
|
| 121 | 
         
             
                                cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
         
     | 
| 122 | 
         
             
                            elif sport == 'GOLF':
         
     | 
| 123 | 
         
             
                                cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
         
     | 
| 
         | 
|
| 
         | 
|
| 124 | 
         
             
                            cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
         
     | 
| 125 | 
         
             
                            entry_counts = cleaned_df['BaseName'].value_counts()
         
     | 
| 126 | 
         
             
                            cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
         
     | 
| 
         @@ -130,6 +134,8 @@ def load_contest_file(upload, type, helper = None, sport = None): 
     | 
|
| 130 | 
         
             
                                cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
         
     | 
| 131 | 
         
             
                            elif sport == 'GOLF':
         
     | 
| 132 | 
         
             
                                cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
         
     | 
| 
         | 
|
| 
         | 
|
| 133 | 
         
             
                        elif type == 'Showdown':
         
     | 
| 134 | 
         
             
                            if sport == 'NHL':
         
     | 
| 135 | 
         
             
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
         
     | 
| 
         | 
|
| 113 | 
         
             
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True)
         
     | 
| 114 | 
         
             
                            elif sport == 'GOLF':
         
     | 
| 115 | 
         
             
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
         
     | 
| 116 | 
         
            +
                            elif sport == 'WNBA':
         
     | 
| 117 | 
         
            +
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' F ', ' UTIL ', 'G '], value=',', regex=True)
         
     | 
| 118 | 
         
             
                            print(sport)
         
     | 
| 119 | 
         
             
                            check_lineups = cleaned_df.copy()
         
     | 
| 120 | 
         
             
                            if sport == 'MLB':
         
     | 
| 
         | 
|
| 123 | 
         
             
                                cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
         
     | 
| 124 | 
         
             
                            elif sport == 'GOLF':
         
     | 
| 125 | 
         
             
                                cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
         
     | 
| 126 | 
         
            +
                            elif sport == 'WNBA':
         
     | 
| 127 | 
         
            +
                                cleaned_df[['Guard1', 'Guard2', 'Forward1', 'Forward2', 'Forward3', 'UTIL']] = cleaned_df['Lineup'].str.split(',', expand=True)
         
     | 
| 128 | 
         
             
                            cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
         
     | 
| 129 | 
         
             
                            entry_counts = cleaned_df['BaseName'].value_counts()
         
     | 
| 130 | 
         
             
                            cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
         
     | 
| 
         | 
|
| 134 | 
         
             
                                cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
         
     | 
| 135 | 
         
             
                            elif sport == 'GOLF':
         
     | 
| 136 | 
         
             
                                cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
         
     | 
| 137 | 
         
            +
                            elif sport == 'WNBA':
         
     | 
| 138 | 
         
            +
                                cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guard1', 'Guard2', 'Forward1', 'Forward2', 'Forward3', 'UTIL']]
         
     | 
| 139 | 
         
             
                        elif type == 'Showdown':
         
     | 
| 140 | 
         
             
                            if sport == 'NHL':
         
     | 
| 141 | 
         
             
                                cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
         
     |