James McCool
commited on
Commit
·
5b2d759
1
Parent(s):
55a9933
Add WNBA support for contest file loading
Browse files- Implemented specific handling for WNBA lineups in the load_contest_file function, allowing for the correct parsing of player positions and lineup structure.
- Updated the DataFrame processing to accommodate WNBA-specific columns, enhancing the application's functionality for users participating in WNBA contests.
global_func/load_contest_file.py
CHANGED
|
@@ -113,6 +113,8 @@ def load_contest_file(upload, type, helper = None, sport = None):
|
|
| 113 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True)
|
| 114 |
elif sport == 'GOLF':
|
| 115 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
|
|
|
|
|
|
|
| 116 |
print(sport)
|
| 117 |
check_lineups = cleaned_df.copy()
|
| 118 |
if sport == 'MLB':
|
|
@@ -121,6 +123,8 @@ def load_contest_file(upload, type, helper = None, sport = None):
|
|
| 121 |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
| 122 |
elif sport == 'GOLF':
|
| 123 |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
|
|
|
|
|
|
| 124 |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
|
| 125 |
entry_counts = cleaned_df['BaseName'].value_counts()
|
| 126 |
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
|
|
@@ -130,6 +134,8 @@ def load_contest_file(upload, type, helper = None, sport = None):
|
|
| 130 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
|
| 131 |
elif sport == 'GOLF':
|
| 132 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
|
|
|
|
|
|
|
| 133 |
elif type == 'Showdown':
|
| 134 |
if sport == 'NHL':
|
| 135 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
|
|
|
|
| 113 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True)
|
| 114 |
elif sport == 'GOLF':
|
| 115 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
|
| 116 |
+
elif sport == 'WNBA':
|
| 117 |
+
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' F ', ' UTIL ', 'G '], value=',', regex=True)
|
| 118 |
print(sport)
|
| 119 |
check_lineups = cleaned_df.copy()
|
| 120 |
if sport == 'MLB':
|
|
|
|
| 123 |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
| 124 |
elif sport == 'GOLF':
|
| 125 |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
| 126 |
+
elif sport == 'WNBA':
|
| 127 |
+
cleaned_df[['Guard1', 'Guard2', 'Forward1', 'Forward2', 'Forward3', 'UTIL']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
| 128 |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
|
| 129 |
entry_counts = cleaned_df['BaseName'].value_counts()
|
| 130 |
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
|
|
|
|
| 134 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
|
| 135 |
elif sport == 'GOLF':
|
| 136 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
|
| 137 |
+
elif sport == 'WNBA':
|
| 138 |
+
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guard1', 'Guard2', 'Forward1', 'Forward2', 'Forward3', 'UTIL']]
|
| 139 |
elif type == 'Showdown':
|
| 140 |
if sport == 'NHL':
|
| 141 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
|