Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
383a505
1
Parent(s):
90b5b34
Add NHL support to ROO build functions and Streamlit display
Browse files- app.py +9 -0
- function_hold/NHL_functions.py +483 -0
app.py
CHANGED
|
@@ -19,8 +19,10 @@ from pandas import DataFrame
|
|
| 19 |
#bring in functions
|
| 20 |
from function_hold.NBA_functions import DK_NBA_ROO_Build, FD_NBA_ROO_Build
|
| 21 |
from function_hold.MMA_functions import DK_MMA_ROO_Build, FD_MMA_ROO_Build
|
|
|
|
| 22 |
|
| 23 |
nba_percentages_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
|
|
|
| 24 |
mma_percentages_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}', '12x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
| 25 |
|
| 26 |
def load_file(upload):
|
|
@@ -110,6 +112,11 @@ with tab2:
|
|
| 110 |
disp_file = DK_NBA_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
| 111 |
elif site_var_sb == "Fanduel":
|
| 112 |
disp_file = FD_NBA_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
elif sport_var == "NFL":
|
| 114 |
if site_var_sb == "Draftkings":
|
| 115 |
disp_file = DK_NFL_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
|
@@ -130,6 +137,8 @@ with tab2:
|
|
| 130 |
if 'disp_file' in locals():
|
| 131 |
if sport_var == "NBA":
|
| 132 |
st.dataframe(disp_file.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nba_percentages_format, precision=2), height=1000, use_container_width = True)
|
|
|
|
|
|
|
| 133 |
elif sport_var == "MMA":
|
| 134 |
st.dataframe(disp_file.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(mma_percentages_format, precision=2), height=1000, use_container_width = True)
|
| 135 |
except:
|
|
|
|
| 19 |
#bring in functions
|
| 20 |
from function_hold.NBA_functions import DK_NBA_ROO_Build, FD_NBA_ROO_Build
|
| 21 |
from function_hold.MMA_functions import DK_MMA_ROO_Build, FD_MMA_ROO_Build
|
| 22 |
+
from function_hold.NHL_functions import DK_NHL_ROO_Build, FD_NHL_ROO_Build
|
| 23 |
|
| 24 |
nba_percentages_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
| 25 |
+
nhl_percentages_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
| 26 |
mma_percentages_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}', '12x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
| 27 |
|
| 28 |
def load_file(upload):
|
|
|
|
| 112 |
disp_file = DK_NBA_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
| 113 |
elif site_var_sb == "Fanduel":
|
| 114 |
disp_file = FD_NBA_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
| 115 |
+
elif sport_var == "NHL":
|
| 116 |
+
if site_var_sb == "Draftkings":
|
| 117 |
+
disp_file = DK_NHL_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
| 118 |
+
elif site_var_sb == "Fanduel":
|
| 119 |
+
disp_file = FD_NHL_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
| 120 |
elif sport_var == "NFL":
|
| 121 |
if site_var_sb == "Draftkings":
|
| 122 |
disp_file = DK_NFL_ROO_Build(projections, floor_var_sb, ceiling_var_sb, std_var_sb, distribution_type_sb)
|
|
|
|
| 137 |
if 'disp_file' in locals():
|
| 138 |
if sport_var == "NBA":
|
| 139 |
st.dataframe(disp_file.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nba_percentages_format, precision=2), height=1000, use_container_width = True)
|
| 140 |
+
elif sport_var == "NHL":
|
| 141 |
+
st.dataframe(disp_file.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nhl_percentages_format, precision=2), height=1000, use_container_width = True)
|
| 142 |
elif sport_var == "MMA":
|
| 143 |
st.dataframe(disp_file.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(mma_percentages_format, precision=2), height=1000, use_container_width = True)
|
| 144 |
except:
|
function_hold/NHL_functions.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from numpy import nan as np_nan
|
| 2 |
+
from numpy import where as np_where
|
| 3 |
+
from numpy import random as np_random
|
| 4 |
+
from numpy import zeros as np_zeros
|
| 5 |
+
from numpy import array as np_array
|
| 6 |
+
from pandas import concat as pd_concat
|
| 7 |
+
from pandas import merge as pd_merge
|
| 8 |
+
from pandas import DataFrame
|
| 9 |
+
|
| 10 |
+
def DK_NHL_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribution_type):
|
| 11 |
+
total_sims = 1000
|
| 12 |
+
|
| 13 |
+
projects_raw = projections_file.copy()
|
| 14 |
+
projects_raw = projects_raw.replace("", np_nan)
|
| 15 |
+
dk_df = projects_raw.sort_values(by='Median', ascending=False)
|
| 16 |
+
|
| 17 |
+
basic_own_df = dk_df.copy()
|
| 18 |
+
basic_own_df['name_team'] = basic_own_df['Player'] + basic_own_df['Position']
|
| 19 |
+
|
| 20 |
+
def calculate_ownership(df, position):
|
| 21 |
+
# Filter the dataframe based on the position
|
| 22 |
+
frame = df[df['Position'].str.contains(position)]
|
| 23 |
+
|
| 24 |
+
# Calculate Small Field Own%
|
| 25 |
+
frame['Base Own%'] = np_where(
|
| 26 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 27 |
+
frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
|
| 28 |
+
frame['Own']
|
| 29 |
+
)
|
| 30 |
+
frame['Base Own%'] = np_where(
|
| 31 |
+
frame['Base Own%'] > 75,
|
| 32 |
+
75,
|
| 33 |
+
frame['Base Own%']
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Calculate Small Field Own%
|
| 37 |
+
frame['Small Field Own%'] = np_where(
|
| 38 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 39 |
+
frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
| 40 |
+
frame['Own']
|
| 41 |
+
)
|
| 42 |
+
frame['Small Field Own%'] = np_where(
|
| 43 |
+
frame['Small Field Own%'] > 75,
|
| 44 |
+
75,
|
| 45 |
+
frame['Small Field Own%']
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Calculate Large Field Own%
|
| 49 |
+
frame['Large Field Own%'] = np_where(
|
| 50 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 51 |
+
frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
| 52 |
+
frame['Own']
|
| 53 |
+
)
|
| 54 |
+
frame['Large Field Own%'] = np_where(
|
| 55 |
+
frame['Large Field Own%'] > 75,
|
| 56 |
+
75,
|
| 57 |
+
frame['Large Field Own%']
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Calculate Cash Own%
|
| 61 |
+
frame['Cash Own%'] = np_where(
|
| 62 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 63 |
+
frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
| 64 |
+
frame['Own']
|
| 65 |
+
)
|
| 66 |
+
frame['Cash Own%'] = np_where(
|
| 67 |
+
frame['Cash Own%'] > 75,
|
| 68 |
+
75,
|
| 69 |
+
frame['Cash Own%']
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
return frame
|
| 73 |
+
|
| 74 |
+
# Apply the function to each dataframe
|
| 75 |
+
w_frame = calculate_ownership(basic_own_df, 'W')
|
| 76 |
+
c_frame = calculate_ownership(basic_own_df, 'C')
|
| 77 |
+
d_frame = calculate_ownership(basic_own_df, 'D')
|
| 78 |
+
g_frame = calculate_ownership(basic_own_df, 'G')
|
| 79 |
+
|
| 80 |
+
w_reg_norm_var = 330 / w_frame['Base Own%'].sum()
|
| 81 |
+
w_small_norm_var = 330 / w_frame['Small Field Own%'].sum()
|
| 82 |
+
w_large_norm_var = 330 / w_frame['Large Field Own%'].sum()
|
| 83 |
+
w_cash_norm_var = 330 / w_frame['Cash Own%'].sum()
|
| 84 |
+
w_frame['Own'] = w_frame['Base Own%'] * w_reg_norm_var
|
| 85 |
+
w_frame['Small Field Own%'] = w_frame['Small Field Own%'] * w_small_norm_var
|
| 86 |
+
w_frame['Large Field Own%'] = w_frame['Large Field Own%'] * w_large_norm_var
|
| 87 |
+
w_frame['Cash Own%'] = w_frame['Cash Own%'] * w_cash_norm_var
|
| 88 |
+
|
| 89 |
+
c_reg_norm_var = 260 / c_frame['Base Own%'].sum()
|
| 90 |
+
c_small_norm_var = 260 / c_frame['Small Field Own%'].sum()
|
| 91 |
+
c_large_norm_var = 260 / c_frame['Large Field Own%'].sum()
|
| 92 |
+
c_cash_norm_var = 260 / c_frame['Cash Own%'].sum()
|
| 93 |
+
c_frame['Own'] = c_frame['Base Own%'] * c_reg_norm_var
|
| 94 |
+
c_frame['Small Field Own%'] = c_frame['Small Field Own%'] * c_small_norm_var
|
| 95 |
+
c_frame['Large Field Own%'] = c_frame['Large Field Own%'] * c_large_norm_var
|
| 96 |
+
c_frame['Cash Own%'] = c_frame['Cash Own%'] * c_cash_norm_var
|
| 97 |
+
|
| 98 |
+
d_reg_norm_var = 210 / d_frame['Base Own%'].sum()
|
| 99 |
+
d_small_norm_var = 210 / d_frame['Small Field Own%'].sum()
|
| 100 |
+
d_large_norm_var = 210 / d_frame['Large Field Own%'].sum()
|
| 101 |
+
d_cash_norm_var = 210 / d_frame['Cash Own%'].sum()
|
| 102 |
+
d_frame['Own'] = d_frame['Base Own%'] * d_reg_norm_var
|
| 103 |
+
d_frame['Small Field Own%'] = d_frame['Small Field Own%'] * d_small_norm_var
|
| 104 |
+
d_frame['Large Field Own%'] = d_frame['Large Field Own%'] * d_large_norm_var
|
| 105 |
+
d_frame['Cash Own%'] = d_frame['Cash Own%'] * d_cash_norm_var
|
| 106 |
+
|
| 107 |
+
g_reg_norm_var = 100 / g_frame['Base Own%'].sum()
|
| 108 |
+
g_small_norm_var = 100 / g_frame['Small Field Own%'].sum()
|
| 109 |
+
g_large_norm_var = 100 / g_frame['Large Field Own%'].sum()
|
| 110 |
+
g_cash_norm_var = 100 / g_frame['Cash Own%'].sum()
|
| 111 |
+
g_frame['Own'] = g_frame['Base Own%'] * g_reg_norm_var
|
| 112 |
+
g_frame['Small Field Own%'] = g_frame['Small Field Own%'] * g_small_norm_var
|
| 113 |
+
g_frame['Large Field Own%'] = g_frame['Large Field Own%'] * g_large_norm_var
|
| 114 |
+
g_frame['Cash Own%'] = g_frame['Cash Own%'] * g_cash_norm_var
|
| 115 |
+
|
| 116 |
+
basic_own_df = pd_concat([w_frame, c_frame, d_frame, g_frame])
|
| 117 |
+
|
| 118 |
+
basic_own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
|
| 119 |
+
small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
|
| 120 |
+
large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
|
| 121 |
+
cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
|
| 122 |
+
basic_team_dict = dict(zip(basic_own_df.name_team, basic_own_df.Team))
|
| 123 |
+
basic_opp_dict = dict(zip(basic_own_df.Player, basic_own_df.Opp))
|
| 124 |
+
|
| 125 |
+
flex_file = basic_own_df.copy()
|
| 126 |
+
flex_file['Floor_raw'] = flex_file['Median'] * .25
|
| 127 |
+
flex_file['Ceiling_raw'] = flex_file['Median'] * 2
|
| 128 |
+
flex_file['Floor'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
|
| 129 |
+
flex_file['Floor'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
|
| 130 |
+
flex_file['Ceiling'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
|
| 131 |
+
flex_file['Ceiling'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
|
| 132 |
+
flex_file['STD'] = flex_file['Median'] / 3
|
| 133 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 134 |
+
flex_file = flex_file.reset_index(drop=True)
|
| 135 |
+
hold_file = flex_file.copy()
|
| 136 |
+
overall_file = flex_file.copy()
|
| 137 |
+
salary_file = flex_file.copy()
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
overall_floor_gpu = np_array(overall_file['Floor'])
|
| 141 |
+
overall_ceiling_gpu = np_array(overall_file['Ceiling'])
|
| 142 |
+
overall_median_gpu = np_array(overall_file['Median'])
|
| 143 |
+
overall_std_gpu = np_array(overall_file['STD'])
|
| 144 |
+
overall_salary_gpu = np_array(overall_file['Salary'])
|
| 145 |
+
|
| 146 |
+
data_shape = (len(overall_file['Player']), total_sims) # Example: 1000 rows
|
| 147 |
+
salary_array = np_zeros(data_shape)
|
| 148 |
+
sim_array = np_zeros(data_shape)
|
| 149 |
+
|
| 150 |
+
for x in range(0, total_sims):
|
| 151 |
+
result_gpu = overall_salary_gpu
|
| 152 |
+
salary_array[:, x] = result_gpu
|
| 153 |
+
cupy_array = salary_array
|
| 154 |
+
|
| 155 |
+
salary_file = salary_file.reset_index(drop=True)
|
| 156 |
+
salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
|
| 157 |
+
salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
|
| 158 |
+
except:
|
| 159 |
+
for x in range(0,total_sims):
|
| 160 |
+
salary_file[x] = salary_file['Salary']
|
| 161 |
+
salary_check_file = salary_file.copy()
|
| 162 |
+
|
| 163 |
+
salary_file=salary_check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 164 |
+
|
| 165 |
+
salary_file = salary_file.div(1000)
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
for x in range(0, total_sims):
|
| 169 |
+
if distribution_type == 'normal':
|
| 170 |
+
# Normal distribution (existing logic)
|
| 171 |
+
result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
|
| 172 |
+
elif distribution_type == 'poisson':
|
| 173 |
+
# Poisson distribution - using median as lambda
|
| 174 |
+
result_gpu = np_random.poisson(overall_median_gpu)
|
| 175 |
+
elif distribution_type == 'bimodal':
|
| 176 |
+
# Bimodal distribution - mixture of two normal distributions
|
| 177 |
+
# First peak centered at 80% of median, second at 120% of median
|
| 178 |
+
if np_random.random() < 0.5:
|
| 179 |
+
result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
|
| 180 |
+
else:
|
| 181 |
+
result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
|
| 184 |
+
|
| 185 |
+
sim_array[:, x] = result_gpu
|
| 186 |
+
add_array = sim_array
|
| 187 |
+
|
| 188 |
+
overall_file = overall_file.reset_index(drop=True)
|
| 189 |
+
df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
|
| 190 |
+
check_file = pd_concat([overall_file, df2], axis=1)
|
| 191 |
+
except:
|
| 192 |
+
for x in range(0,total_sims):
|
| 193 |
+
if distribution_type == 'normal':
|
| 194 |
+
overall_file[x] = np_random.normal(overall_file['Median'], overall_file['STD'])
|
| 195 |
+
elif distribution_type == 'poisson':
|
| 196 |
+
overall_file[x] = np_random.poisson(overall_file['Median'])
|
| 197 |
+
elif distribution_type == 'bimodal':
|
| 198 |
+
# Bimodal distribution fallback
|
| 199 |
+
if np_random.random() < 0.5:
|
| 200 |
+
overall_file[x] = np_random.normal(overall_file['Median'] * 0.8, overall_file['STD'])
|
| 201 |
+
else:
|
| 202 |
+
overall_file[x] = np_random.normal(overall_file['Median'] * 1.2, overall_file['STD'])
|
| 203 |
+
check_file = overall_file.copy()
|
| 204 |
+
|
| 205 |
+
overall_file=check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 206 |
+
|
| 207 |
+
players_only = hold_file[['Player']]
|
| 208 |
+
raw_lineups_file = players_only
|
| 209 |
+
|
| 210 |
+
for x in range(0,total_sims):
|
| 211 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
| 212 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 213 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 214 |
+
|
| 215 |
+
players_only=players_only.drop(['Player'], axis=1)
|
| 216 |
+
|
| 217 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
| 218 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
| 219 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
| 220 |
+
|
| 221 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 222 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 223 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 224 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 225 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 226 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 227 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 228 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 229 |
+
|
| 230 |
+
players_only['Player'] = hold_file[['Player']]
|
| 231 |
+
|
| 232 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 233 |
+
|
| 234 |
+
final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
|
| 235 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 236 |
+
final_Proj['Own'] = final_Proj['Player'].map(basic_own_dict).astype(float)
|
| 237 |
+
final_Proj['Small Field Own%'] = final_Proj['Player'].map(small_own_dict).astype(float)
|
| 238 |
+
final_Proj['Large Field Own%'] = final_Proj['Player'].map(large_own_dict).astype(float)
|
| 239 |
+
final_Proj['Cash Own%'] = final_Proj['Player'].map(cash_own_dict).astype(float)
|
| 240 |
+
final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
|
| 241 |
+
final_Proj['Team'] = final_Proj['name_team'].map(basic_team_dict)
|
| 242 |
+
final_Proj['Opp'] = final_Proj['Player'].map(basic_opp_dict)
|
| 243 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%']]
|
| 244 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 245 |
+
|
| 246 |
+
return final_Proj.copy()
|
| 247 |
+
|
| 248 |
+
def FD_NHL_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribution_type):
|
| 249 |
+
total_sims = 1000
|
| 250 |
+
|
| 251 |
+
projects_raw = projections_file.copy()
|
| 252 |
+
fd_df = projects_raw.sort_values(by='Median', ascending=False)
|
| 253 |
+
|
| 254 |
+
basic_own_df = fd_df.copy()
|
| 255 |
+
basic_own_df['name_team'] = basic_own_df['Player'] + basic_own_df['Position']
|
| 256 |
+
|
| 257 |
+
def calculate_ownership(df, position):
|
| 258 |
+
# Filter the dataframe based on the position
|
| 259 |
+
frame = df[df['Position'].str.contains(position)]
|
| 260 |
+
|
| 261 |
+
frame['Base Own%'] = np_where(
|
| 262 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 263 |
+
frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
|
| 264 |
+
frame['Own']
|
| 265 |
+
)
|
| 266 |
+
frame['Base Own%'] = np_where(
|
| 267 |
+
frame['Base Own%'] > 75,
|
| 268 |
+
75,
|
| 269 |
+
frame['Base Own%']
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# Calculate Small Field Own%
|
| 273 |
+
frame['Small Field Own%'] = np_where(
|
| 274 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 275 |
+
frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
| 276 |
+
frame['Own']
|
| 277 |
+
)
|
| 278 |
+
frame['Small Field Own%'] = np_where(
|
| 279 |
+
frame['Small Field Own%'] > 75,
|
| 280 |
+
75,
|
| 281 |
+
frame['Small Field Own%']
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
# Calculate Large Field Own%
|
| 285 |
+
frame['Large Field Own%'] = np_where(
|
| 286 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 287 |
+
frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
| 288 |
+
frame['Own']
|
| 289 |
+
)
|
| 290 |
+
frame['Large Field Own%'] = np_where(
|
| 291 |
+
frame['Large Field Own%'] > 75,
|
| 292 |
+
75,
|
| 293 |
+
frame['Large Field Own%']
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Calculate Cash Own%
|
| 297 |
+
frame['Cash Own%'] = np_where(
|
| 298 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
| 299 |
+
frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
| 300 |
+
frame['Own']
|
| 301 |
+
)
|
| 302 |
+
frame['Cash Own%'] = np_where(
|
| 303 |
+
frame['Cash Own%'] > 75,
|
| 304 |
+
75,
|
| 305 |
+
frame['Cash Own%']
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
return frame
|
| 309 |
+
|
| 310 |
+
# Apply the function to each dataframe
|
| 311 |
+
w_frame = calculate_ownership(basic_own_df, 'W')
|
| 312 |
+
c_frame = calculate_ownership(basic_own_df, 'C')
|
| 313 |
+
d_frame = calculate_ownership(basic_own_df, 'D')
|
| 314 |
+
g_frame = calculate_ownership(basic_own_df, 'G')
|
| 315 |
+
|
| 316 |
+
w_reg_norm_var = 295 / w_frame['Base Own%'].sum()
|
| 317 |
+
w_small_norm_var = 295 / w_frame['Small Field Own%'].sum()
|
| 318 |
+
w_large_norm_var = 295 / w_frame['Large Field Own%'].sum()
|
| 319 |
+
w_cash_norm_var = 295 / w_frame['Cash Own%'].sum()
|
| 320 |
+
w_frame['Own'] = w_frame['Base Own%'] * w_reg_norm_var
|
| 321 |
+
w_frame['Small Field Own%'] = w_frame['Small Field Own%'] * w_small_norm_var
|
| 322 |
+
w_frame['Large Field Own%'] = w_frame['Large Field Own%'] * w_large_norm_var
|
| 323 |
+
w_frame['Cash Own%'] = w_frame['Cash Own%'] * w_cash_norm_var
|
| 324 |
+
|
| 325 |
+
c_reg_norm_var = 295 / c_frame['Base Own%'].sum()
|
| 326 |
+
c_small_norm_var = 295 / c_frame['Small Field Own%'].sum()
|
| 327 |
+
c_large_norm_var = 295 / c_frame['Large Field Own%'].sum()
|
| 328 |
+
c_cash_norm_var = 295 / c_frame['Cash Own%'].sum()
|
| 329 |
+
c_frame['Own'] = c_frame['Base Own%'] * c_reg_norm_var
|
| 330 |
+
c_frame['Small Field Own%'] = c_frame['Small Field Own%'] * c_small_norm_var
|
| 331 |
+
c_frame['Large Field Own%'] = c_frame['Large Field Own%'] * c_large_norm_var
|
| 332 |
+
c_frame['Cash Own%'] = c_frame['Cash Own%'] * c_cash_norm_var
|
| 333 |
+
|
| 334 |
+
d_reg_norm_var = 210 / d_frame['Base Own%'].sum()
|
| 335 |
+
d_small_norm_var = 210 / d_frame['Small Field Own%'].sum()
|
| 336 |
+
d_large_norm_var = 210 / d_frame['Large Field Own%'].sum()
|
| 337 |
+
d_cash_norm_var = 210 / d_frame['Cash Own%'].sum()
|
| 338 |
+
d_frame['Own'] = d_frame['Base Own%'] * d_reg_norm_var
|
| 339 |
+
d_frame['Small Field Own%'] = d_frame['Small Field Own%'] * d_small_norm_var
|
| 340 |
+
d_frame['Large Field Own%'] = d_frame['Large Field Own%'] * d_large_norm_var
|
| 341 |
+
d_frame['Cash Own%'] = d_frame['Cash Own%'] * d_cash_norm_var
|
| 342 |
+
|
| 343 |
+
g_reg_norm_var = 100 / g_frame['Base Own%'].sum()
|
| 344 |
+
g_small_norm_var = 100 / g_frame['Small Field Own%'].sum()
|
| 345 |
+
g_large_norm_var = 100 / g_frame['Large Field Own%'].sum()
|
| 346 |
+
g_cash_norm_var = 100 / g_frame['Cash Own%'].sum()
|
| 347 |
+
g_frame['Own'] = g_frame['Base Own%'] * g_reg_norm_var
|
| 348 |
+
g_frame['Small Field Own%'] = g_frame['Small Field Own%'] * g_small_norm_var
|
| 349 |
+
g_frame['Large Field Own%'] = g_frame['Large Field Own%'] * g_large_norm_var
|
| 350 |
+
g_frame['Cash Own%'] = g_frame['Cash Own%'] * g_cash_norm_var
|
| 351 |
+
|
| 352 |
+
basic_own_df = pd_concat([w_frame, c_frame, d_frame, g_frame])
|
| 353 |
+
|
| 354 |
+
basic_own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
|
| 355 |
+
small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
|
| 356 |
+
large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
|
| 357 |
+
cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
|
| 358 |
+
basic_team_dict = dict(zip(basic_own_df.name_team, basic_own_df.Team))
|
| 359 |
+
basic_opp_dict = dict(zip(basic_own_df.Player, basic_own_df.Opp))
|
| 360 |
+
|
| 361 |
+
flex_file = basic_own_df.copy()
|
| 362 |
+
flex_file['Floor_raw'] = flex_file['Median'] * .25
|
| 363 |
+
flex_file['Ceiling_raw'] = flex_file['Median'] * 2
|
| 364 |
+
flex_file['Floor'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
|
| 365 |
+
flex_file['Floor'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
|
| 366 |
+
flex_file['Ceiling'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
|
| 367 |
+
flex_file['Ceiling'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
|
| 368 |
+
flex_file['STD'] = flex_file['Median'] / 3
|
| 369 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 370 |
+
flex_file = flex_file.reset_index(drop=True)
|
| 371 |
+
hold_file = flex_file.copy()
|
| 372 |
+
overall_file = flex_file.copy()
|
| 373 |
+
salary_file = flex_file.copy()
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
overall_floor_gpu = np_array(overall_file['Floor'])
|
| 377 |
+
overall_ceiling_gpu = np_array(overall_file['Ceiling'])
|
| 378 |
+
overall_median_gpu = np_array(overall_file['Median'])
|
| 379 |
+
overall_std_gpu = np_array(overall_file['STD'])
|
| 380 |
+
overall_salary_gpu = np_array(overall_file['Salary'])
|
| 381 |
+
|
| 382 |
+
data_shape = (len(overall_file['Player']), total_sims) # Example: 1000 rows
|
| 383 |
+
salary_array = np_zeros(data_shape)
|
| 384 |
+
sim_array = np_zeros(data_shape)
|
| 385 |
+
|
| 386 |
+
for x in range(0, total_sims):
|
| 387 |
+
result_gpu = overall_salary_gpu
|
| 388 |
+
salary_array[:, x] = result_gpu
|
| 389 |
+
cupy_array = salary_array
|
| 390 |
+
|
| 391 |
+
salary_file = salary_file.reset_index(drop=True)
|
| 392 |
+
salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
|
| 393 |
+
salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
|
| 394 |
+
except:
|
| 395 |
+
for x in range(0,total_sims):
|
| 396 |
+
salary_file[x] = salary_file['Salary']
|
| 397 |
+
salary_check_file = salary_file.copy()
|
| 398 |
+
|
| 399 |
+
salary_file=salary_check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 400 |
+
|
| 401 |
+
salary_file = salary_file.div(1000)
|
| 402 |
+
|
| 403 |
+
try:
|
| 404 |
+
for x in range(0, total_sims):
|
| 405 |
+
if distribution_type == 'normal':
|
| 406 |
+
# Normal distribution (existing logic)
|
| 407 |
+
result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
|
| 408 |
+
elif distribution_type == 'poisson':
|
| 409 |
+
# Poisson distribution - using median as lambda
|
| 410 |
+
result_gpu = np_random.poisson(overall_median_gpu)
|
| 411 |
+
elif distribution_type == 'bimodal':
|
| 412 |
+
# Bimodal distribution - mixture of two normal distributions
|
| 413 |
+
# First peak centered at 80% of median, second at 120% of median
|
| 414 |
+
if np_random.random() < 0.5:
|
| 415 |
+
result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
|
| 416 |
+
else:
|
| 417 |
+
result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
|
| 418 |
+
else:
|
| 419 |
+
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
|
| 420 |
+
|
| 421 |
+
sim_array[:, x] = result_gpu
|
| 422 |
+
add_array = sim_array
|
| 423 |
+
|
| 424 |
+
overall_file = overall_file.reset_index(drop=True)
|
| 425 |
+
df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
|
| 426 |
+
check_file = pd_concat([overall_file, df2], axis=1)
|
| 427 |
+
except:
|
| 428 |
+
for x in range(0,total_sims):
|
| 429 |
+
if distribution_type == 'normal':
|
| 430 |
+
overall_file[x] = np_random.normal(overall_file['Median'], overall_file['STD'])
|
| 431 |
+
elif distribution_type == 'poisson':
|
| 432 |
+
overall_file[x] = np_random.poisson(overall_file['Median'])
|
| 433 |
+
elif distribution_type == 'bimodal':
|
| 434 |
+
# Bimodal distribution fallback
|
| 435 |
+
if np_random.random() < 0.5:
|
| 436 |
+
overall_file[x] = np_random.normal(overall_file['Median'] * 0.8, overall_file['STD'])
|
| 437 |
+
else:
|
| 438 |
+
overall_file[x] = np_random.normal(overall_file['Median'] * 1.2, overall_file['STD'])
|
| 439 |
+
check_file = overall_file.copy()
|
| 440 |
+
|
| 441 |
+
overall_file=check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 442 |
+
|
| 443 |
+
players_only = hold_file[['Player']]
|
| 444 |
+
raw_lineups_file = players_only
|
| 445 |
+
|
| 446 |
+
for x in range(0,total_sims):
|
| 447 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
| 448 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
| 449 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
| 450 |
+
|
| 451 |
+
players_only=players_only.drop(['Player'], axis=1)
|
| 452 |
+
|
| 453 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
| 454 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
| 455 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
| 456 |
+
|
| 457 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
| 458 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
| 459 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
| 460 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
| 461 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
| 462 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
| 463 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
| 464 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
| 465 |
+
|
| 466 |
+
players_only['Player'] = hold_file[['Player']]
|
| 467 |
+
|
| 468 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 469 |
+
|
| 470 |
+
final_Proj = merge(hold_file, final_outcomes, on="Player")
|
| 471 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
| 472 |
+
final_Proj['Own'] = final_Proj['Player'].map(basic_own_dict).astype(float)
|
| 473 |
+
final_Proj['Small Field Own%'] = final_Proj['Player'].map(small_own_dict).astype(float)
|
| 474 |
+
final_Proj['Large Field Own%'] = final_Proj['Player'].map(large_own_dict).astype(float)
|
| 475 |
+
final_Proj['Cash Own%'] = final_Proj['Player'].map(cash_own_dict).astype(float)
|
| 476 |
+
final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
|
| 477 |
+
final_Proj['Team'] = final_Proj['name_team'].map(basic_team_dict)
|
| 478 |
+
final_Proj['Opp'] = final_Proj['Player'].map(basic_opp_dict)
|
| 479 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%']]
|
| 480 |
+
final_Proj['Salary'] = final_Proj['Salary'].astype(int)
|
| 481 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
| 482 |
+
|
| 483 |
+
return final_Proj.copy()
|