|
import streamlit as st |
|
import requests |
|
import torch |
|
from transformers import pipeline |
|
from transformers import BartTokenizer, BartForConditionalGeneration |
|
|
|
|
|
model_repo_path = 'Muh113/Text-Summ' |
|
|
|
|
|
model = BartForConditionalGeneration.from_pretrained(model_repo_path) |
|
tokenizer = BartTokenizer.from_pretrained(model_repo_path) |
|
|
|
|
|
summarizer = pipeline('summarization', model=model,tokenizer=tokenizer) |
|
|
|
|
|
st.title("Text Summarization App") |
|
|
|
|
|
text_input = st.text_area("Enter text to summarize", height=300) |
|
|
|
|
|
if st.button("Summarize"): |
|
if text_input: |
|
with st.spinner("Generating summary..."): |
|
try: |
|
summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False) |
|
st.subheader("Summary") |
|
st.write(summary[0]['summary_text']) |
|
except Exception as e: |
|
st.error(f"Error during summarization: {e}") |
|
else: |
|
st.warning("Please enter some text to summarize.") |