Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,46 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
# Load the tokenizer and model
|
5 |
-
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
|
6 |
-
model = AutoModelForCausalLM.from_pretrained('gpt2-large')
|
7 |
-
|
8 |
-
def generate_blog_post(topic):
|
9 |
-
prompt = f"Write a blog post about {topic}."
|
10 |
-
inputs = tokenizer.encode(prompt, return_tensors='pt')
|
11 |
-
|
12 |
-
# Generate text
|
13 |
-
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, do_sample=True, top_p=0.95, top_k=60)
|
14 |
-
|
15 |
-
# Decode the generated text
|
16 |
-
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
-
return text
|
18 |
-
|
19 |
-
# Streamlit interface
|
20 |
st.title("Blog Post Generator")
|
21 |
st.write("Generate a blog post for a given topic using GPT-2 Large.")
|
22 |
|
23 |
-
|
|
|
24 |
|
|
|
25 |
if st.button("Generate Blog Post"):
|
26 |
if topic:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
else:
|
35 |
-
st.
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Load GPT-2 large model and tokenizer using autoTokenizers and auto model
|
6 |
+
@st.cache(allow_output_mutation=True)
|
7 |
+
def load_model():
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2-large")
|
10 |
+
return tokenizer, model
|
11 |
+
|
12 |
+
tokenizer, model = load_model()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
st.title("Blog Post Generator")
|
15 |
st.write("Generate a blog post for a given topic using GPT-2 Large.")
|
16 |
|
17 |
+
# User input for the blog post topic
|
18 |
+
topic = st.text_input("Enter the topic for your blog post:")
|
19 |
|
20 |
+
# Blog post button
|
21 |
if st.button("Generate Blog Post"):
|
22 |
if topic:
|
23 |
+
# Refine the input prompt to guide the model toward generating a blog post
|
24 |
+
input_text = f"Write a detailed blog post about {topic}. The post should cover various aspects of the topic and provide valuable information to the readers. Start with an introduction and follow with detailed paragraphs."
|
25 |
+
|
26 |
+
# Encode the input text
|
27 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
28 |
+
|
29 |
+
# Generate the blog post using GPT-2 large
|
30 |
+
outputs = model.generate(
|
31 |
+
inputs,
|
32 |
+
max_length=500,
|
33 |
+
num_return_sequences=1,
|
34 |
+
no_repeat_ngram_size=2,
|
35 |
+
early_stopping=True,
|
36 |
+
temperature=0.7,
|
37 |
+
top_p=0.9
|
38 |
+
)
|
39 |
+
|
40 |
+
# Decode the generated text
|
41 |
+
blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
st.write("### Generated Blog Post:")
|
44 |
+
st.write(blog_post)
|
45 |
else:
|
46 |
+
st.write("Please enter a topic to generate a blog post.")
|