# Ke Chen # knutchen@ucsd.edu # Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data # The configuration file of ST-SED model or HTS-AT model exp_name = "exp_htsat_2048d" # the saved ckpt prefix name of the model workspace = "/home/kechen/Research/HTSAT" # the folder of your code dataset_path = "/home/Research/audioset" # the dataset path desed_folder = "/home/Research/DESED" # the desed file dataset_type = "audioset" loss_type = "clip_bce" balanced_data = True resume_checkpoint = "/home/kechen/Research/Latent_ASP/model_backup/htsat_audioset_2048d.ckpt" esc_fold = 0 # just for esc dataset, select the fold you need for evaluation and (+1) validation debug = False random_seed = 970131 # 19970318 970131 12412 127777 1009 34047 batch_size = 32 * 4 # batch size per GPU x GPU number , default is 32 x 4 = 128 learning_rate = 1e-3 # 1e-4 also workable max_epoch = 100 num_workers = 3 lr_scheduler_epoch = [10,20,30] lr_rate = [0.02, 0.05, 0.1] # these data preparation optimizations do not bring many improvements, so deprecated enable_token_label = False # token label class_map_path = "class_hier_map.npy" class_filter = None retrieval_index = [15382, 9202, 130, 17618, 17157, 17516, 16356, 6165, 13992, 9238, 5550, 5733, 1914, 1600, 3450, 13735, 11108, 3762, 9840, 11318, 8131, 4429, 16748, 4992, 16783, 12691, 4945, 8779, 2805, 9418, 2797, 14357, 5603, 212, 3852, 12666, 1338, 10269, 2388, 8260, 4293, 14454, 7677, 11253, 5060, 14938, 8840, 4542, 2627, 16336, 8992, 15496, 11140, 446, 6126, 10691, 8624, 10127, 9068, 16710, 10155, 14358, 7567, 5695, 2354, 8057, 17635, 133, 16183, 14535, 7248, 4560, 14429, 2463, 10773, 113, 2462, 9223, 4929, 14274, 4716, 17307, 4617, 2132, 11083, 1039, 1403, 9621, 13936, 2229, 2875, 17840, 9359, 13311, 9790, 13288, 4750, 17052, 8260, 14900] token_label_range = [0.2,0.6] enable_time_shift = False # shift time enable_label_enhance = False # enhance hierarchical label enable_repeat_mode = False # repeat the spectrogram / reshape the spectrogram # for model's design enable_tscam = True # enbale the token-semantic layer # for signal processing sample_rate = 32000 # 16000 for scv2, 32000 for audioset and esc-50 clip_samples = sample_rate * 10 # audio_set 10-sec clip window_size = 1024 hop_size = 320 # 160 for scv2, 320 for audioset and esc-50 mel_bins = 64 fmin = 50 fmax = 14000 shift_max = int(clip_samples * 0.5) # for data collection classes_num = 527 # esc: 50 | audioset: 527 | scv2: 35 patch_size = (25, 4) # deprecated crop_size = None # int(clip_samples * 0.5) deprecated # for htsat hyperparamater htsat_window_size = 8 htsat_spec_size = 256 htsat_patch_size = 4 htsat_stride = (4, 4) htsat_num_head = [4,8,16,32] htsat_dim = 256 # for 2048-d model htsat_depth = [2,2,6,2] swin_pretrain_path = None # "/home/Research/model_backup/pretrain/swin_tiny_c24_patch4_window8_256.pth" # Some Deprecated Optimization in the model design, check the model code for details htsat_attn_heatmap = False htsat_hier_output = False htsat_use_max = False # no use here ensemble_checkpoints = [] ensemble_strides = [] # weight average folder wa_folder = "/home/version_0/checkpoints/" # weight average output filename wa_model_path = "HTSAT_AudioSet_Saved_x.ckpt" esm_model_pathes = [ "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_1.ckpt", "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_2.ckpt", "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_3.ckpt", "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_4.ckpt", "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_5.ckpt", "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_6.ckpt" ] # for framewise localization heatmap_dir = "/home/Research/heatmap_output" test_file = "htsat-test-ensemble" fl_local = False # indicate if we need to use this dataset for the framewise detection fl_dataset = "/home/Research/desed/desed_eval.npy" fl_class_num = [ "Speech", "Frying", "Dishes", "Running_water", "Blender", "Electric_shaver_toothbrush", "Alarm_bell_ringing", "Cat", "Dog", "Vacuum_cleaner" ] # map 527 classes into 10 classes fl_audioset_mapping = [ [0,1,2,3,4,5,6,7], [366, 367, 368], [364], [288, 289, 290, 291, 292, 293, 294, 295, 296, 297], [369], [382], [310, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402], [81, 82, 83, 84, 85], [74, 75, 76, 77, 78, 79], [377] ]