import numpy as np import argparse import csv import os import glob import datetime import time import logging import h5py import librosa from utils import create_folder, get_sub_filepaths import config def create_indexes(args): """Create indexes a for dataloader to read for training. When users have a new task and their own data, they need to create similar indexes. The indexes contain meta information of "where to find the data for training". """ # Arguments & parameters waveforms_hdf5_path = args.waveforms_hdf5_path indexes_hdf5_path = args.indexes_hdf5_path # Paths create_folder(os.path.dirname(indexes_hdf5_path)) with h5py.File(waveforms_hdf5_path, 'r') as hr: with h5py.File(indexes_hdf5_path, 'w') as hw: audios_num = len(hr['audio_name']) hw.create_dataset('audio_name', data=hr['audio_name'][:], dtype='S20') hw.create_dataset('target', data=hr['target'][:], dtype=np.bool) hw.create_dataset('hdf5_path', data=[waveforms_hdf5_path.encode()] * audios_num, dtype='S200') hw.create_dataset('index_in_hdf5', data=np.arange(audios_num), dtype=np.int32) print('Write to {}'.format(indexes_hdf5_path)) def combine_full_indexes(args): """Combine all balanced and unbalanced indexes hdf5s to a single hdf5. This combined indexes hdf5 is used for training with full data (~20k balanced audio clips + ~1.9m unbalanced audio clips). """ # Arguments & parameters indexes_hdf5s_dir = args.indexes_hdf5s_dir full_indexes_hdf5_path = args.full_indexes_hdf5_path classes_num = config.classes_num # Paths paths = get_sub_filepaths(indexes_hdf5s_dir) paths = [path for path in paths if ( 'train' in path and 'full_train' not in path and 'mini' not in path)] print('Total {} hdf5 to combine.'.format(len(paths))) with h5py.File(full_indexes_hdf5_path, 'w') as full_hf: full_hf.create_dataset( name='audio_name', shape=(0,), maxshape=(None,), dtype='S20') full_hf.create_dataset( name='target', shape=(0, classes_num), maxshape=(None, classes_num), dtype=np.bool) full_hf.create_dataset( name='hdf5_path', shape=(0,), maxshape=(None,), dtype='S200') full_hf.create_dataset( name='index_in_hdf5', shape=(0,), maxshape=(None,), dtype=np.int32) for path in paths: with h5py.File(path, 'r') as part_hf: print(path) n = len(full_hf['audio_name'][:]) new_n = n + len(part_hf['audio_name'][:]) full_hf['audio_name'].resize((new_n,)) full_hf['audio_name'][n : new_n] = part_hf['audio_name'][:] full_hf['target'].resize((new_n, classes_num)) full_hf['target'][n : new_n] = part_hf['target'][:] full_hf['hdf5_path'].resize((new_n,)) full_hf['hdf5_path'][n : new_n] = part_hf['hdf5_path'][:] full_hf['index_in_hdf5'].resize((new_n,)) full_hf['index_in_hdf5'][n : new_n] = part_hf['index_in_hdf5'][:] print('Write combined full hdf5 to {}'.format(full_indexes_hdf5_path)) if __name__ == '__main__': parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='mode') parser_create_indexes = subparsers.add_parser('create_indexes') parser_create_indexes.add_argument('--waveforms_hdf5_path', type=str, required=True, help='Path of packed waveforms hdf5.') parser_create_indexes.add_argument('--indexes_hdf5_path', type=str, required=True, help='Path to write out indexes hdf5.') parser_combine_full_indexes = subparsers.add_parser('combine_full_indexes') parser_combine_full_indexes.add_argument('--indexes_hdf5s_dir', type=str, required=True, help='Directory containing indexes hdf5s to be combined.') parser_combine_full_indexes.add_argument('--full_indexes_hdf5_path', type=str, required=True, help='Path to write out full indexes hdf5 file.') args = parser.parse_args() if args.mode == 'create_indexes': create_indexes(args) elif args.mode == 'combine_full_indexes': combine_full_indexes(args) else: raise Exception('Incorrect arguments!')