Spaces:
Running
Running
File size: 11,803 Bytes
503b2cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import re
import torch
import random
from tqdm import tqdm
from unidecode import unidecode
from torch.utils.data import Dataset
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
from utils import PATCH_SIZE, PATCH_LENGTH, PATCH_SAMPLING_BATCH_SIZE
class Patchilizer:
"""
A class for converting music bars to patches and vice versa.
"""
def __init__(self):
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
self.regexPattern = f"({'|'.join(map(re.escape, self.delimiters))})"
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
def split_bars(self, body):
"""
Split a body of music into individual bars.
"""
bars = re.split(self.regexPattern, "".join(body))
bars = list(filter(None, bars))
# remove empty strings
if bars[0] in self.delimiters:
bars[1] = bars[0] + bars[1]
bars = bars[1:]
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
return bars
def bar2patch(self, bar, patch_size=PATCH_SIZE):
"""
Convert a bar into a patch of specified length.
"""
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
patch = patch[:patch_size]
patch += [self.pad_token_id] * (patch_size - len(patch))
return patch
def patch2bar(self, patch):
"""
Convert a patch into a bar.
"""
return "".join(
chr(idx) if idx > self.eos_token_id else ""
for idx in patch
if idx != self.eos_token_id
)
def encode(
self,
abc_code,
patch_length=PATCH_LENGTH,
patch_size=PATCH_SIZE,
add_special_patches=False,
):
"""
Encode music into patches of specified length.
"""
lines = unidecode(abc_code).split("\n")
lines = list(filter(None, lines)) # remove empty lines
body = ""
patches = []
for line in lines:
if len(line) > 1 and (
(line[0].isalpha() and line[1] == ":") or line.startswith("%%score")
):
if body:
bars = self.split_bars(body)
patches.extend(
self.bar2patch(
bar + "\n" if idx == len(bars) - 1 else bar, patch_size
)
for idx, bar in enumerate(bars)
)
body = ""
patches.append(self.bar2patch(line + "\n", patch_size))
else:
body += line + "\n"
if body:
patches.extend(
self.bar2patch(bar, patch_size) for bar in self.split_bars(body)
)
if add_special_patches:
bos_patch = [self.bos_token_id] * (patch_size - 1) + [self.eos_token_id]
eos_patch = [self.bos_token_id] + [self.eos_token_id] * (patch_size - 1)
patches = [bos_patch] + patches + [eos_patch]
return patches[:patch_length]
def decode(self, patches):
"""
Decode patches into music.
"""
return "".join(self.patch2bar(patch) for patch in patches)
class PatchLevelDecoder(PreTrainedModel):
"""
An Patch-level Decoder model for generating patch features in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.base = GPT2Model(config)
def forward(self, patches: torch.Tensor) -> torch.Tensor:
"""
The forward pass of the patch-level decoder model.
:param patches: the patches to be encoded
:return: the encoded patches
"""
patches = torch.nn.functional.one_hot(patches, num_classes=128).float()
patches = patches.reshape(len(patches), -1, PATCH_SIZE * 128)
patches = self.patch_embedding(patches.to(self.device))
return self.base(inputs_embeds=patches)
class CharLevelDecoder(PreTrainedModel):
"""
A Char-level Decoder model for generating the characters within each bar patch sequentially.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.base = GPT2LMHeadModel(config)
def forward(
self,
encoded_patches: torch.Tensor,
target_patches: torch.Tensor,
patch_sampling_batch_size: int,
):
"""
The forward pass of the char-level decoder model.
:param encoded_patches: the encoded patches
:param target_patches: the target patches
:return: the decoded patches
"""
# preparing the labels for model training
target_masks = target_patches == self.pad_token_id
labels = target_patches.clone().masked_fill_(target_masks, -100)
# masking the labels for model training
target_masks = torch.ones_like(labels)
target_masks = target_masks.masked_fill_(labels == -100, 0)
# select patches
if (
patch_sampling_batch_size != 0
and patch_sampling_batch_size < target_patches.shape[0]
):
indices = list(range(len(target_patches)))
random.shuffle(indices)
selected_indices = sorted(indices[:patch_sampling_batch_size])
target_patches = target_patches[selected_indices, :]
target_masks = target_masks[selected_indices, :]
encoded_patches = encoded_patches[selected_indices, :]
labels = labels[selected_indices, :]
# get input embeddings
inputs_embeds = torch.nn.functional.embedding(
target_patches, self.base.transformer.wte.weight
)
# concatenate the encoded patches with the input embeddings
inputs_embeds = torch.cat(
(encoded_patches.unsqueeze(1), inputs_embeds[:, 1:, :]), dim=1
)
return self.base(
inputs_embeds=inputs_embeds, attention_mask=target_masks, labels=labels
)
def generate(self, encoded_patch: torch.Tensor, tokens: torch.Tensor):
"""
The generate function for generating a patch based on the encoded patch and already generated tokens.
:param encoded_patch: the encoded patch
:param tokens: already generated tokens in the patch
:return: the probability distribution of next token
"""
encoded_patch = encoded_patch.reshape(1, 1, -1)
tokens = tokens.reshape(1, -1)
# Get input embeddings
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
# Concatenate the encoded patch with the input embeddings
tokens = torch.cat((encoded_patch, tokens[:, 1:, :]), dim=1)
# Get output from model
outputs = self.base(inputs_embeds=tokens)
# Get probabilities of next token
return torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
class TunesFormer(PreTrainedModel):
"""
TunesFormer is a hierarchical music generation model based on bar patching.
It includes a patch-level decoder and a character-level decoder.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, encoder_config, decoder_config, share_weights=False):
super().__init__(encoder_config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
if share_weights:
max_layers = max(
encoder_config.num_hidden_layers, decoder_config.num_hidden_layers
)
max_context_size = max(encoder_config.max_length, decoder_config.max_length)
max_position_embeddings = max(
encoder_config.max_position_embeddings,
decoder_config.max_position_embeddings,
)
encoder_config.num_hidden_layers = max_layers
encoder_config.max_length = max_context_size
encoder_config.max_position_embeddings = max_position_embeddings
decoder_config.num_hidden_layers = max_layers
decoder_config.max_length = max_context_size
decoder_config.max_position_embeddings = max_position_embeddings
self.patch_level_decoder = PatchLevelDecoder(encoder_config)
self.char_level_decoder = CharLevelDecoder(decoder_config)
if share_weights:
self.patch_level_decoder.base = self.char_level_decoder.base.transformer
def forward(
self,
patches: torch.Tensor,
patch_sampling_batch_size: int = PATCH_SAMPLING_BATCH_SIZE,
):
"""
The forward pass of the TunesFormer model.
:param patches: the patches to be both encoded and decoded
:return: the decoded patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
return self.char_level_decoder(
encoded_patches.squeeze(0)[:-1, :],
patches.squeeze(0)[1:, :],
patch_sampling_batch_size,
)
def generate(
self,
patches: torch.Tensor,
tokens: torch.Tensor,
top_p: float = 1,
top_k: int = 0,
temperature: float = 1,
seed: int = None,
):
"""
The generate function for generating patches based on patches.
:param patches: the patches to be encoded
:return: the generated patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
if tokens == None:
tokens = torch.tensor([self.bos_token_id], device=self.device)
generated_patch = []
random.seed(seed)
while True:
if seed != None:
n_seed = random.randint(0, 1000000)
random.seed(n_seed)
else:
n_seed = None
prob = (
self.char_level_decoder.generate(encoded_patches[0][-1], tokens)
.cpu()
.detach()
.numpy()
)
prob = top_p_sampling(prob, top_p=top_p, return_probs=True)
prob = top_k_sampling(prob, top_k=top_k, return_probs=True)
token = temperature_sampling(prob, temperature=temperature, seed=n_seed)
generated_patch.append(token)
if token == self.eos_token_id or len(tokens) >= PATCH_SIZE - 1:
break
else:
tokens = torch.cat(
(tokens, torch.tensor([token], device=self.device)), dim=0
)
return generated_patch, n_seed
class PatchilizedData(Dataset):
def __init__(self, items, patchilizer):
self.texts = []
for item in tqdm(items):
text = item["control code"] + "\n".join(
item["abc notation"].split("\n")[1:]
)
input_patch = patchilizer.encode(text, add_special_patches=True)
input_patch = torch.tensor(input_patch)
if torch.sum(input_patch) != 0:
self.texts.append(input_patch)
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
return self.texts[idx]
|