MrDdz commited on
Commit
b83aafc
·
1 Parent(s): e847bd1
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
2
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
  import torch
4
  import numpy as np
 
5
 
6
 
7
  # Define the function for sentiment analysis
@@ -30,13 +31,13 @@ image = st.image("images.png", width=200)
30
  # Get user input
31
  text = st.text_input("Type here:")
32
  button = st.button('Analyze')
33
- d = {
34
 
35
- 0:'Negative',
36
- 1:'Neutral',
37
- 2: 'Positive'
38
 
39
- }
40
  # Define the CSS style for the app
41
  st.markdown(
42
  """
@@ -79,9 +80,14 @@ def get_model():
79
  tokenizer, model = get_model()
80
 
81
  if text and button:
82
- text_sample = tokenizer([text], padding = 'max_length')
83
- print(text_sample)
84
- output = model(text_sample)
 
 
 
 
 
85
  # st.write("Logits: ",output.logits)
86
  # y_pred = np.argmax(output.logits.detach().numpy(),axis =1)
87
- # st.write("Prediction :",d[y_pred[0]])
 
2
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
  import torch
4
  import numpy as np
5
+ from scipy.special import softmax
6
 
7
 
8
  # Define the function for sentiment analysis
 
31
  # Get user input
32
  text = st.text_input("Type here:")
33
  button = st.button('Analyze')
34
+ # d = {
35
 
36
+ # 0:'Negative',
37
+ # 1:'Neutral',
38
+ # 2: 'Positive'
39
 
40
+ # }
41
  # Define the CSS style for the app
42
  st.markdown(
43
  """
 
80
  tokenizer, model = get_model()
81
 
82
  if text and button:
83
+ text_sample = tokenizer(text, padding = 'max_length',return_tensors = 'pt')
84
+ # print(text_sample)
85
+ output = model(**text_sample)
86
+ scores_ = output[0][0].detach().numpy()
87
+ scores_ = softmax(scores_)
88
+
89
+ labels = ['Negative','Neutral','Positive']
90
+ scores = {l:float(s) for (l,s) in zip(labels,scores_)}
91
  # st.write("Logits: ",output.logits)
92
  # y_pred = np.argmax(output.logits.detach().numpy(),axis =1)
93
+ st.write("Prediction :",labels)