from __future__ import annotations import json import tempfile from pathlib import Path import gradio as gr from huggingface_hub import hf_hub_download from modular_graph_and_candidates import ( build_graph_json, generate_html, build_timeline_json, generate_timeline_html, filter_graph_by_threshold, ) def _escape_srcdoc(text: str) -> str: return ( text.replace("&", "&") .replace("\"", """) .replace("'", "'") .replace("<", "<") .replace(">", ">") ) HF_MAIN_REPO = "https://github.com/huggingface/transformers" CACHE_REPO = "Molbap/hf_cached_embeds_log" def _fetch_from_cache_repo(kind: str, sim_method: str, threshold: float, multimodal: bool, *, height_vh: int = 85): repo_id = CACHE_REPO latest_fp = hf_hub_download(repo_id=repo_id, filename="latest.json", repo_type="dataset") info = json.loads(Path(latest_fp).read_text(encoding="utf-8")) sha = info.get("sha") key = f"{sha}/{sim_method}-m{int(multimodal)}" json_fp = hf_hub_download(repo_id=repo_id, filename=f"{kind}/{key}.json", repo_type="dataset") raw_data = json.loads(Path(json_fp).read_text(encoding="utf-8")) filtered_data = filter_graph_by_threshold(raw_data, threshold) if kind == "timeline": raw_html = generate_timeline_html(filtered_data) else: raw_html = generate_html(filtered_data) iframe_html = f'' tmp = Path(tempfile.mkstemp(suffix=("_timeline.json" if kind == "timeline" else ".json"))[1]) tmp.write_text(json.dumps(filtered_data), encoding="utf-8") return iframe_html, str(tmp) def run_loc(sim_method: str, multimodal: bool, *, height_vh: int = 85): latest_fp = hf_hub_download(repo_id=CACHE_REPO, filename="latest.json", repo_type="dataset") info = json.loads(Path(latest_fp).read_text(encoding="utf-8")) sha = info["sha"] key = f"{sha}/{sim_method}-m{int(multimodal)}" html_fp = hf_hub_download(repo_id=CACHE_REPO, filename=f"loc/{key}.html", repo_type="dataset") raw_html = Path(html_fp).read_text(encoding="utf-8") iframe_html = f'' return iframe_html def run_graph(repo_url: str, threshold: float, multimodal: bool, sim_method: str, *, height_vh: int = 85): return _fetch_from_cache_repo("graph", sim_method, threshold, multimodal, height_vh=height_vh) def run_timeline(repo_url: str, threshold: float, multimodal: bool, sim_method: str, *, height_vh: int = 85): return _fetch_from_cache_repo("timeline", sim_method, threshold, multimodal, height_vh=height_vh) # ───────────────────────────── UI ──────────────────────────────────────────────── CUSTOM_CSS = """ #graph_html iframe, #timeline_html iframe {height:85vh !important; width:100% !important; border:none;} """ TAB_INDEX = {"timeline": 0, "loc": 1, "graph": 2} with gr.Blocks(css=CUSTOM_CSS) as demo: header = gr.Markdown("## 🔍 Modular-candidate explorer for 🤗 Transformers") with gr.Tabs() as tabs: with gr.Tab("Chronological Timeline", id="timeline"): with gr.Row(): timeline_repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL") timeline_thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity ≥") timeline_multi_cb = gr.Checkbox(label="Only multimodal models") gr.Markdown("**Embedding method:** TBD") timeline_btn = gr.Button("Build timeline") timeline_html_out = gr.HTML(elem_id="timeline_html", show_label=False) timeline_json_out = gr.File(label="Download timeline.json") timeline_btn.click( lambda repo, thresh, multi: run_timeline(repo, thresh, multi, "jaccard"), [timeline_repo_in, timeline_thresh, timeline_multi_cb], [timeline_html_out, timeline_json_out], ) with gr.Tab("LOC Growth", id="loc"): sim_radio2 = gr.Radio(["jaccard","embedding"], value="jaccard", label="Similarity metric") multi_cb2 = gr.Checkbox(label="Only multimodal models") go_loc = gr.Button("Show LOC growth") loc_html = gr.HTML(show_label=False) go_loc.click(run_loc, [sim_radio2, multi_cb2], loc_html) with gr.Tab("Dependency Graph", id="graph"): with gr.Row(): repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL") thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity ≥") multi_cb = gr.Checkbox(label="Only multimodal models") gr.Markdown("**Embedding method:** TBD") go_btn = gr.Button("Build graph") graph_html_out = gr.HTML(elem_id="graph_html", show_label=False) graph_json_out = gr.File(label="Download graph.json") go_btn.click( lambda repo, thresh, multi: run_graph(repo, thresh, multi, "jaccard"), [repo_in, thresh, multi_cb], [graph_html_out, graph_json_out], ) # make embed_html a sibling of Tabs (not a child), so we can hide Tabs but show this embed_html = gr.HTML(visible=False) def _on_load(req: gr.Request): qp = req.query_params or {} tab_key = (qp.get("tab") or "").lower() embed = (qp.get("embed") == "1") tab_sel = TAB_INDEX.get(tab_key, 0) if embed: # shorter iframe inside article view if tab_key == "graph": html, _ = run_graph(HF_MAIN_REPO, 0.7, False, "jaccard", height_vh=60) elif tab_key == "timeline": html, _ = run_timeline(HF_MAIN_REPO, 0.7, False, "jaccard", height_vh=60) else: html = run_loc("jaccard", False, height_vh=60) return ( gr.update(visible=False), # header gr.update(visible=False), # tabs gr.update(value=html, visible=True), # embed_html ) return ( gr.update(visible=True), gr.update(visible=True, selected=tab_sel), gr.update(visible=False), ) demo.load(_on_load, outputs=[header, tabs, embed_html]) if __name__ == "__main__": demo.launch(allowed_paths=["static"])