from __future__ import annotations
import json
import tempfile
from pathlib import Path
import gradio as gr
from huggingface_hub import hf_hub_download
from modular_graph_and_candidates import (
build_graph_json,
generate_html,
build_timeline_json,
generate_timeline_html,
filter_graph_by_threshold,
)
def _escape_srcdoc(text: str) -> str:
return (
text.replace("&", "&")
.replace("\"", """)
.replace("'", "'")
.replace("<", "<")
.replace(">", ">")
)
HF_MAIN_REPO = "https://github.com/huggingface/transformers"
CACHE_REPO = "Molbap/hf_cached_embeds_log"
def _fetch_from_cache_repo(kind: str, sim_method: str, threshold: float, multimodal: bool, *, height_vh: int = 85):
repo_id = CACHE_REPO
latest_fp = hf_hub_download(repo_id=repo_id, filename="latest.json", repo_type="dataset")
info = json.loads(Path(latest_fp).read_text(encoding="utf-8"))
sha = info.get("sha")
key = f"{sha}/{sim_method}-m{int(multimodal)}"
json_fp = hf_hub_download(repo_id=repo_id, filename=f"{kind}/{key}.json", repo_type="dataset")
raw_data = json.loads(Path(json_fp).read_text(encoding="utf-8"))
filtered_data = filter_graph_by_threshold(raw_data, threshold)
if kind == "timeline":
raw_html = generate_timeline_html(filtered_data)
else:
raw_html = generate_html(filtered_data)
iframe_html = f''
tmp = Path(tempfile.mkstemp(suffix=("_timeline.json" if kind == "timeline" else ".json"))[1])
tmp.write_text(json.dumps(filtered_data), encoding="utf-8")
return iframe_html, str(tmp)
def run_loc(sim_method: str, multimodal: bool, *, height_vh: int = 85):
latest_fp = hf_hub_download(repo_id=CACHE_REPO, filename="latest.json", repo_type="dataset")
info = json.loads(Path(latest_fp).read_text(encoding="utf-8"))
sha = info["sha"]
key = f"{sha}/{sim_method}-m{int(multimodal)}"
html_fp = hf_hub_download(repo_id=CACHE_REPO, filename=f"loc/{key}.html", repo_type="dataset")
raw_html = Path(html_fp).read_text(encoding="utf-8")
iframe_html = f''
return iframe_html
def run_graph(repo_url: str, threshold: float, multimodal: bool, sim_method: str, *, height_vh: int = 85):
return _fetch_from_cache_repo("graph", sim_method, threshold, multimodal, height_vh=height_vh)
def run_timeline(repo_url: str, threshold: float, multimodal: bool, sim_method: str, *, height_vh: int = 85):
return _fetch_from_cache_repo("timeline", sim_method, threshold, multimodal, height_vh=height_vh)
# ───────────────────────────── UI ────────────────────────────────────────────────
CUSTOM_CSS = """
#graph_html iframe, #timeline_html iframe {height:85vh !important; width:100% !important; border:none;}
"""
TAB_INDEX = {"timeline": 0, "loc": 1, "graph": 2}
with gr.Blocks(css=CUSTOM_CSS) as demo:
header = gr.Markdown("## 🔍 Modular-candidate explorer for 🤗 Transformers")
with gr.Tabs() as tabs:
with gr.Tab("Chronological Timeline", id="timeline"):
with gr.Row():
timeline_repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
timeline_thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity ≥")
timeline_multi_cb = gr.Checkbox(label="Only multimodal models")
gr.Markdown("**Embedding method:** TBD")
timeline_btn = gr.Button("Build timeline")
timeline_html_out = gr.HTML(elem_id="timeline_html", show_label=False)
timeline_json_out = gr.File(label="Download timeline.json")
timeline_btn.click(
lambda repo, thresh, multi: run_timeline(repo, thresh, multi, "jaccard"),
[timeline_repo_in, timeline_thresh, timeline_multi_cb],
[timeline_html_out, timeline_json_out],
)
with gr.Tab("LOC Growth", id="loc"):
sim_radio2 = gr.Radio(["jaccard","embedding"], value="jaccard", label="Similarity metric")
multi_cb2 = gr.Checkbox(label="Only multimodal models")
go_loc = gr.Button("Show LOC growth")
loc_html = gr.HTML(show_label=False)
go_loc.click(run_loc, [sim_radio2, multi_cb2], loc_html)
with gr.Tab("Dependency Graph", id="graph"):
with gr.Row():
repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity ≥")
multi_cb = gr.Checkbox(label="Only multimodal models")
gr.Markdown("**Embedding method:** TBD")
go_btn = gr.Button("Build graph")
graph_html_out = gr.HTML(elem_id="graph_html", show_label=False)
graph_json_out = gr.File(label="Download graph.json")
go_btn.click(
lambda repo, thresh, multi: run_graph(repo, thresh, multi, "jaccard"),
[repo_in, thresh, multi_cb],
[graph_html_out, graph_json_out],
)
# make embed_html a sibling of Tabs (not a child), so we can hide Tabs but show this
embed_html = gr.HTML(visible=False)
def _on_load(req: gr.Request):
qp = req.query_params or {}
tab_key = (qp.get("tab") or "").lower()
embed = (qp.get("embed") == "1")
tab_sel = TAB_INDEX.get(tab_key, 0)
if embed:
# shorter iframe inside article view
if tab_key == "graph":
html, _ = run_graph(HF_MAIN_REPO, 0.7, False, "jaccard", height_vh=60)
elif tab_key == "timeline":
html, _ = run_timeline(HF_MAIN_REPO, 0.7, False, "jaccard", height_vh=60)
else:
html = run_loc("jaccard", False, height_vh=60)
return (
gr.update(visible=False), # header
gr.update(visible=False), # tabs
gr.update(value=html, visible=True), # embed_html
)
return (
gr.update(visible=True),
gr.update(visible=True, selected=tab_sel),
gr.update(visible=False),
)
demo.load(_on_load, outputs=[header, tabs, embed_html])
if __name__ == "__main__":
demo.launch(allowed_paths=["static"])