File size: 48,389 Bytes
53c0cc8 49600c8 53c0cc8 0bf31be 2ccc01b 49600c8 53c0cc8 cb81a08 53c0cc8 09c1921 53c0cc8 09c1921 53c0cc8 31b1b7e 53c0cc8 0bf31be 31b1b7e c862054 b90f4fc c862054 b90f4fc c862054 7afe575 661a9c6 4fa1ace c862054 de07ff6 4fa1ace 0b63d8e 4fa1ace 0b63d8e 4fa1ace 0b63d8e 061a198 4fa1ace 061a198 0b63d8e 4fa1ace 0b63d8e 4fa1ace cb81a08 4fa1ace e9769e3 cb81a08 e9769e3 cb81a08 4fa1ace 0b63d8e 4fa1ace 0b63d8e 4fa1ace 0b63d8e 4fa1ace c862054 4fa1ace c0a0c28 c862054 c0a0c28 4fa1ace 0b63d8e c862054 061a198 31b1b7e 53c0cc8 31b1b7e 53c0cc8 4fa1ace 53c0cc8 09c1921 31b1b7e 09c1921 31b1b7e 09c1921 31b1b7e 09c1921 061a198 31b1b7e 061a198 31b1b7e 09c1921 53c0cc8 a9aba5d 214d223 a9aba5d 31b1b7e 214d223 a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 0b63d8e 31b1b7e 0b63d8e 31b1b7e a9aba5d 53c0cc8 09c1921 53c0cc8 09c1921 53c0cc8 31b1b7e 53c0cc8 49600c8 53c0cc8 49600c8 53c0cc8 c862054 c7100d5 c862054 c7100d5 c862054 53c0cc8 c862054 53c0cc8 c862054 6d106b8 c862054 aa6453c c7100d5 aa6453c 53c0cc8 c862054 53c0cc8 c862054 53c0cc8 49600c8 ec2e7db 49600c8 ae4e744 49600c8 ec2e7db 49600c8 ae4e744 ec2e7db ae4e744 c7100d5 49600c8 ec2e7db 49600c8 8e9afa4 49600c8 8e9afa4 49600c8 c473351 7bd6ff0 c473351 7bd6ff0 49600c8 ae4e744 49600c8 ae4e744 49600c8 ae4e744 c7100d5 49600c8 c473351 0d825ac c473351 0d825ac c473351 49600c8 7bd6ff0 27e28ca 7bd6ff0 c473351 dc64b35 49600c8 6d106b8 49600c8 c473351 49600c8 c473351 49600c8 c7100d5 49600c8 6d67d6e 49600c8 6d67d6e 49600c8 6d67d6e c7100d5 49600c8 53c0cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 |
#!/usr/bin/env python
"""
modular_graph_and_candidates.py
================================
Create **one** rich view that combines
1. The *dependency graph* between existing **modular_*.py** implementations in
π€Β Transformers (blue/π‘) **and**
2. The list of *missing* modular models (fullβred nodes) **plus** similarity
edges (fullβred links) between highlyβoverlapping modelling files β the
output of *find_modular_candidates.py* β so you can immediately spot good
refactor opportunities.
βββΒ UsageΒ βββ
```bash
python modular_graph_and_candidates.py /path/to/transformers \
--multimodal # keep only models whose modelling code mentions
# "pixel_values" β₯Β 3 times
--sim-threshold 0.5 # Jaccard cutoff (default 0.50)
--out graph.html # output HTML file name
```
Colour legend in the generated HTML:
* π‘Β **base model**Β β has modular shards *imported* by others but no parent
* π΅Β **derived modular model**Β β has a `modular_*.py` and inherits from β₯β―1 model
* π΄Β **candidate**Β β no `modular_*.py` yet (and/or very similar to another)
* red edges = highβJaccard similarity links (potential to factorise)
"""
from __future__ import annotations
import argparse
import ast
import json
import re
import subprocess
import tokenize
from collections import Counter, defaultdict
from itertools import combinations
from pathlib import Path
from typing import Dict, List, Set, Tuple
from sentence_transformers import SentenceTransformer, util
from tqdm import tqdm
import numpy as np
import spaces
import torch
from datetime import datetime
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# CONFIG
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SIM_DEFAULT = 0.5 # similarity threshold
PIXEL_MIN_HITS = 0 # multimodal trigger ("pixel_values")
HTML_DEFAULT = "d3_modular_graph.html"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) Helpers to analyse *modelling* files (for similarity & multimodal filter)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _strip_source(code: str) -> str:
"""Remove docβstrings, comments and import lines to keep only the core code."""
code = re.sub(r'("""|\'\'\')(?:.|\n)*?\1', "", code) # docβstrings
code = re.sub(r"#.*", "", code) # # comments
return "\n".join(ln for ln in code.splitlines()
if not re.match(r"\s*(from|import)\s+", ln))
def _tokenise(code: str) -> Set[str]:
"""Extract identifiers using regex - more robust than tokenizer for malformed code."""
toks: Set[str] = set()
for match in re.finditer(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', code):
toks.add(match.group())
return toks
def build_token_bags(models_root: Path) -> Tuple[Dict[str, List[Set[str]]], Dict[str, int]]:
"""Return tokenβbags of every `modeling_*.py` plus a pixelβvalue counter."""
bags: Dict[str, List[Set[str]]] = defaultdict(list)
pixel_hits: Dict[str, int] = defaultdict(int)
for mdl_dir in sorted(p for p in models_root.iterdir() if p.is_dir()):
for py in mdl_dir.rglob("modeling_*.py"):
try:
text = py.read_text(encoding="utfβ8")
pixel_hits[mdl_dir.name] += text.count("pixel_values")
bags[mdl_dir.name].append(_tokenise(_strip_source(text)))
except Exception as e:
print(f"β οΈ Skipped {py}: {e}")
return bags, pixel_hits
def _jaccard(a: Set[str], b: Set[str]) -> float:
return 0.0 if (not a or not b) else len(a & b) / len(a | b)
def similarity_clusters(bags: Dict[str, List[Set[str]]], thr: float = 0.1) -> Dict[Tuple[str,str], float]:
largest = {m: max(ts, key=len) for m, ts in bags.items() if ts}
out: Dict[Tuple[str,str], float] = {}
for m1, m2 in combinations(sorted(largest.keys()), 2):
s = _jaccard(largest[m1], largest[m2])
if s >= thr:
out[(m1, m2)] = s
return out
@spaces.GPU
def embedding_similarity_clusters(models_root: Path, missing: List[str], thr: float = 0.1) -> Dict[Tuple[str, str], float]:
model = SentenceTransformer("microsoft/codebert-base", trust_remote_code=True)
try:
cfg = model[0].auto_model.config
pos_limit = int(getattr(cfg, "n_positions", getattr(cfg, "max_position_embeddings")))
except Exception:
pos_limit = 1024
seq_len = min(pos_limit, 2048)
model.max_seq_length = seq_len
model[0].max_seq_length = seq_len
model[0].tokenizer.model_max_length = seq_len
texts = {}
for name in tqdm(missing, desc="Reading modeling files"):
if any(skip in name.lower() for skip in ["mobilebert", "lxmert"]):
print(f"Skipping {name} (causes GPU abort)")
continue
code = ""
for py in (models_root / name).rglob("modeling_*.py"):
try:
code += _strip_source(py.read_text(encoding="utf-8")) + "\n"
except Exception:
continue
texts[name] = code.strip() or " "
names = list(texts)
all_embeddings = []
print(f"Encoding embeddings for {len(names)} models...")
batch_size = 4 # keep your default
# ββ two-stage caching: temp (for resume) + permanent (for reuse) βββββββββββββ
temp_cache_path = Path("temp_embeddings.npz") # For resuming computation
final_cache_path = Path("embeddings_cache.npz") # For permanent storage
start_idx = 0
emb_dim = getattr(model, "get_sentence_embedding_dimension", lambda: 768)()
# Try to load from permanent cache first
if final_cache_path.exists():
try:
cached = np.load(final_cache_path, allow_pickle=True)
cached_names = list(cached["names"])
if names == cached_names: # Exact match - use final cache
print(f"β
Using final embeddings cache ({len(cached_names)} models)")
return compute_similarities_from_cache(thr)
except Exception as e:
print(f"β οΈ Failed to load final cache: {e}")
# Try to resume from temp cache
if temp_cache_path.exists():
try:
cached = np.load(temp_cache_path, allow_pickle=True)
cached_names = list(cached["names"])
if names[:len(cached_names)] == cached_names:
loaded = cached["embeddings"].astype(np.float32)
all_embeddings.append(loaded)
start_idx = len(cached_names)
print(f"π Resuming from temp cache: {start_idx}/{len(names)} models")
except Exception as e:
print(f"β οΈ Failed to load temp cache: {e}")
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
for i in tqdm(range(start_idx, len(names), batch_size), desc="Batches", leave=False):
batch_names = names[i:i+batch_size]
batch_texts = [texts[name] for name in batch_names]
try:
print(f"Processing batch: {batch_names}")
emb = model.encode(batch_texts, convert_to_numpy=True, show_progress_bar=False)
except Exception as e:
print(f"β οΈ GPU worker error for batch {batch_names}: {type(e).__name__}: {e}")
emb = np.zeros((len(batch_names), emb_dim), dtype=np.float32)
all_embeddings.append(emb)
# save to temp cache after each batch (for resume)
try:
cur = np.vstack(all_embeddings).astype(np.float32)
np.savez(
temp_cache_path,
embeddings=cur,
names=np.array(names[:i+len(batch_names)], dtype=object),
)
except Exception as e:
print(f"β οΈ Failed to write temp cache: {e}")
if (i - start_idx) % (3 * batch_size) == 0 and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
print(f"π§Ή Cleared GPU cache after batch {(i - start_idx)//batch_size + 1}")
embeddings = np.vstack(all_embeddings).astype(np.float32)
norms = np.linalg.norm(embeddings, axis=1, keepdims=True) + 1e-12
embeddings = embeddings / norms
print("Computing pairwise similarities...")
sims_mat = embeddings @ embeddings.T
out = {}
matrix_size = embeddings.shape[0]
processed_names = names[:matrix_size]
for i in range(matrix_size):
for j in range(i + 1, matrix_size):
s = float(sims_mat[i, j])
if s >= thr:
out[(processed_names[i], processed_names[j])] = s
# Save to final cache when complete
try:
np.savez(final_cache_path, embeddings=embeddings, names=np.array(names, dtype=object))
print(f"πΎ Final embeddings saved to {final_cache_path}")
# Clean up temp cache
if temp_cache_path.exists():
temp_cache_path.unlink()
print(f"π§Ή Cleaned up temp cache")
except Exception as e:
print(f"β οΈ Failed to save final cache: {e}")
return out
def compute_similarities_from_cache(threshold: float) -> Dict[Tuple[str, str], float]:
"""Compute similarities from cached embeddings without reprocessing."""
embeddings_path = Path("embeddings_cache.npz")
if not embeddings_path.exists():
return {}
try:
cached = np.load(embeddings_path, allow_pickle=True)
embeddings = cached["embeddings"].astype(np.float32)
names = list(cached["names"])
# Normalize embeddings
norms = np.linalg.norm(embeddings, axis=1, keepdims=True) + 1e-12
embeddings = embeddings / norms
# Compute similarities
sims_mat = embeddings @ embeddings.T
out = {}
for i in range(len(names)):
for j in range(i + 1, len(names)):
s = float(sims_mat[i, j])
if s >= threshold:
out[(names[i], names[j])] = s
print(f"β‘ Computed {len(out)} similarities from cache (threshold: {threshold})")
return out
except Exception as e:
print(f"β οΈ Failed to compute from cache: {e}")
return {}
def filter_similarities_by_threshold(similarities: Dict[Tuple[str, str], float], threshold: float) -> Dict[Tuple[str, str], float]:
return {pair: score for pair, score in similarities.items() if score >= threshold}
def filter_graph_by_threshold(graph_data: dict, threshold: float) -> dict:
filtered_links = []
for link in graph_data["links"]:
if link.get("cand", False):
try:
score = float(link["label"].rstrip('%')) / 100.0
if score >= threshold:
filtered_links.append(link)
except (ValueError, AttributeError):
filtered_links.append(link)
else:
filtered_links.append(link)
return {
"nodes": graph_data["nodes"],
"links": filtered_links,
**{k: v for k, v in graph_data.items() if k not in ["nodes", "links"]}
}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2) Scan *modular_*.py* files to build an importβdependency graph
# β only **modeling_*** imports are considered (skip configuration / processing)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def modular_files(models_root: Path) -> List[Path]:
return [p for p in models_root.rglob("modular_*.py") if p.suffix == ".py"]
def dependency_graph(modular_files: List[Path], models_root: Path) -> Dict[str, List[Dict[str,str]]]:
"""Return {derived_model: [{source, imported_class}, ...]}
Only `modeling_*` imports are kept; anything coming from configuration/processing/
image* utils is ignored so the visual graph focuses strictly on modelling code.
Excludes edges to sources whose model name is not a model dir.
"""
model_names = {p.name for p in models_root.iterdir() if p.is_dir()}
deps: Dict[str, List[Dict[str,str]]] = defaultdict(list)
for fp in modular_files:
derived = fp.parent.name
try:
tree = ast.parse(fp.read_text(encoding="utfβ8"), filename=str(fp))
except Exception as e:
print(f"β οΈ AST parse failed for {fp}: {e}")
continue
for node in ast.walk(tree):
if not isinstance(node, ast.ImportFrom) or not node.module:
continue
mod = node.module
# keep only *modeling_* imports, drop anything else
if ("modeling_" not in mod or
"configuration_" in mod or
"processing_" in mod or
"image_processing" in mod or
"modeling_attn_mask_utils" in mod):
continue
parts = re.split(r"[./]", mod)
src = next((p for p in parts if p not in {"", "models", "transformers"}), "")
if not src or src == derived or src not in model_names:
continue
for alias in node.names:
deps[derived].append({"source": src, "imported_class": alias.name})
return dict(deps)
# modular_graph_and_candidates.py (top-level)
def get_missing_models(models_root: Path, multimodal: bool = False) -> Tuple[List[str], Dict[str, List[Set[str]]], Dict[str, int]]:
"""Get list of models missing modular implementations."""
bags, pix_hits = build_token_bags(models_root)
mod_files = modular_files(models_root)
models_with_modular = {p.parent.name for p in mod_files}
missing = [m for m in bags if m not in models_with_modular]
if multimodal:
missing = [m for m in missing if pix_hits[m] >= PIXEL_MIN_HITS]
return missing, bags, pix_hits
def compute_similarities(models_root: Path, missing: List[str], bags: Dict[str, List[Set[str]]],
threshold: float, sim_method: str) -> Dict[Tuple[str, str], float]:
min_threshold = 0.1
if sim_method == "jaccard":
return similarity_clusters({m: bags[m] for m in missing}, min_threshold)
else:
embeddings_path = Path("embeddings_cache.npz")
if embeddings_path.exists():
cached_sims = compute_similarities_from_cache(min_threshold)
if cached_sims:
return cached_sims
return embedding_similarity_clusters(models_root, missing, min_threshold)
def build_graph_json(
transformers_dir: Path,
threshold: float = SIM_DEFAULT,
multimodal: bool = False,
sim_method: str = "jaccard",
) -> dict:
"""Return the {nodes, links} dict that D3 needs."""
# Check if we can use cached embeddings only
embeddings_cache = Path("embeddings_cache.npz")
print(f"π Cache file exists: {embeddings_cache.exists()}, sim_method: {sim_method}")
if sim_method == "embedding" and embeddings_cache.exists():
try:
# Try to compute from cache without accessing repo
cached_sims = compute_similarities_from_cache(0.1)
print(f"π Got {len(cached_sims)} cached similarities")
if cached_sims:
# Create graph with cached similarities + modular dependencies
cached_data = np.load(embeddings_cache, allow_pickle=True)
missing = list(cached_data["names"])
# Still need to get modular dependencies from repo
models_root = transformers_dir / "src/transformers/models"
mod_files = modular_files(models_root)
deps = dependency_graph(mod_files, models_root)
# Build full graph structure
nodes = set(missing) # Start with cached models
links = []
# Add dependency links
for drv, lst in deps.items():
for d in lst:
links.append({
"source": d["source"],
"target": drv,
"label": f"{sum(1 for x in lst if x['source'] == d['source'])} imports",
"cand": False
})
nodes.update({d["source"], drv})
# Add similarity links
for (a, b), s in cached_sims.items():
links.append({"source": a, "target": b, "label": f"{s*100:.1f}%", "cand": True})
# Create node list with proper classification
targets = {lk["target"] for lk in links if not lk["cand"]}
sources = {lk["source"] for lk in links if not lk["cand"]}
nodelist = []
for n in sorted(nodes):
if n in missing and n not in sources and n not in targets:
cls = "cand"
elif n in sources and n not in targets:
cls = "base"
else:
cls = "derived"
nodelist.append({"id": n, "cls": cls, "sz": 1})
graph = {"nodes": nodelist, "links": links}
print(f"β‘ Built graph from cache: {len(nodelist)} nodes, {len(links)} links")
if threshold > 0.1:
graph = filter_graph_by_threshold(graph, threshold)
return graph
except Exception as e:
print(f"β οΈ Cache-only build failed: {e}, falling back to full build")
# Full build with repository access
models_root = transformers_dir / "src/transformers/models"
# Get missing models and their data
missing, bags, pix_hits = get_missing_models(models_root, multimodal)
# Build dependency graph
mod_files = modular_files(models_root)
deps = dependency_graph(mod_files, models_root)
# Compute similarities
sims = compute_similarities(models_root, missing, bags, threshold, sim_method)
# ---- assemble nodes & links ----
nodes: Set[str] = set()
links: List[dict] = []
for drv, lst in deps.items():
for d in lst:
links.append({
"source": d["source"],
"target": drv,
"label": f"{sum(1 for x in lst if x['source'] == d['source'])} imports",
"cand": False
})
nodes.update({d["source"], drv})
for (a, b), s in sims.items():
links.append({"source": a, "target": b, "label": f"{s*100:.1f}%", "cand": True})
nodes.update({a, b})
nodes.update(missing)
deg = Counter()
for lk in links:
deg[lk["source"]] += 1
deg[lk["target"]] += 1
max_deg = max(deg.values() or [1])
targets = {lk["target"] for lk in links if not lk["cand"]}
sources = {lk["source"] for lk in links if not lk["cand"]}
missing_only = [m for m in missing if m not in sources and m not in targets]
nodes.update(missing_only)
nodelist = []
for n in sorted(nodes):
if n in missing_only:
cls = "cand"
elif n in sources and n not in targets:
cls = "base"
else:
cls = "derived"
nodelist.append({"id": n, "cls": cls, "sz": 1 + 2*(deg[n]/max_deg)})
graph = {"nodes": nodelist, "links": links}
if threshold > 0.1:
graph = filter_graph_by_threshold(graph, threshold)
return graph
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Timeline functions for chronological visualization
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def get_model_creation_dates(transformers_dir: Path) -> Dict[str, datetime]:
"""Get creation dates for all model directories by finding the earliest add of the directory path."""
models_root = transformers_dir / "src/transformers/models"
creation_dates: Dict[str, datetime] = {}
if not models_root.exists():
return creation_dates
def run_git(args: list[str]) -> subprocess.CompletedProcess:
return subprocess.run(
["git"] + args,
cwd=transformers_dir,
capture_output=True,
text=True,
timeout=120,
)
# Ensure full history; shallow clones make every path look newly added "today".
shallow = run_git(["rev-parse", "--is-shallow-repository"])
if shallow.returncode == 0 and shallow.stdout.strip() == "true":
# Try best-effort unshallow; if it fails, we still proceed.
run_git(["fetch", "--unshallow", "--tags", "--prune"]) # ignore return code
# Fallback if server forbids --unshallow
run_git(["fetch", "--depth=100000", "--tags", "--prune"])
for model_dir in models_root.iterdir():
if not model_dir.is_dir():
continue
rel = f"src/transformers/models/{model_dir.name}/"
# Earliest commit that ADDED something under this directory.
# Use a stable delimiter to avoid locale/spacing issues.
proc = run_git([
"log",
"--reverse", # oldest β newest
"--diff-filter=A", # additions only
"--date=short", # YYYY-MM-DD
'--format=%H|%ad', # hash|date
"--",
rel,
])
if proc.returncode != 0 or not proc.stdout.strip():
# As a fallback, look at the earliest commit touching any tracked file under the dir.
# This can catch cases where files were moved (rename) rather than added.
ls = run_git(["ls-files", rel])
files = [ln for ln in ls.stdout.splitlines() if ln.strip()]
best_date: datetime | None = None
if files:
for fp in files:
proc_file = run_git([
"log",
"--reverse",
"--diff-filter=A",
"--date=short",
"--format=%H|%ad",
"--",
fp,
])
line = proc_file.stdout.splitlines()[0].strip() if proc_file.stdout else ""
if line and "|" in line:
_, d = line.split("|", 1)
try:
dt = datetime.strptime(d.strip(), "%Y-%m-%d")
if best_date is None or dt < best_date:
best_date = dt
except ValueError:
pass
if best_date is not None:
creation_dates[model_dir.name] = best_date
print(f"β
{model_dir.name}: {best_date.strftime('%Y-%m-%d')}")
else:
print(f"β {model_dir.name}: no add commit found")
continue
first_line = proc.stdout.splitlines()[0].strip() # oldest add
if "|" in first_line:
_, date_str = first_line.split("|", 1)
try:
creation_dates[model_dir.name] = datetime.strptime(date_str.strip(), "%Y-%m-%d")
print(f"β
{model_dir.name}: {date_str.strip()}")
except ValueError:
print(f"β {model_dir.name}: bad date format: {date_str!r}")
else:
print(f"β {model_dir.name}: unexpected log format: {first_line!r}")
return creation_dates
def build_timeline_json(
transformers_dir: Path,
threshold: float = SIM_DEFAULT,
multimodal: bool = False,
sim_method: str = "jaccard",
) -> dict:
"""Build chronological timeline with modular connections."""
# Get the standard dependency graph for connections
graph = build_graph_json(transformers_dir, threshold, multimodal, sim_method)
# Get creation dates for chronological positioning
creation_dates = get_model_creation_dates(transformers_dir)
# Enhance nodes with chronological data
for node in graph["nodes"]:
model_name = node["id"]
if model_name in creation_dates:
creation_date = creation_dates[model_name]
node.update({
"date": creation_date.isoformat(),
"year": creation_date.year,
"timestamp": creation_date.timestamp()
})
else:
# Fallback for models without date info
node.update({
"date": "2020-01-01T00:00:00", # Default date
"year": 2020,
"timestamp": datetime(2020, 1, 1).timestamp()
})
# Add timeline metadata
valid_dates = [n for n in graph["nodes"] if n["timestamp"] > 0]
if valid_dates:
min_year = min(n["year"] for n in valid_dates)
max_year = max(n["year"] for n in valid_dates)
graph["timeline_meta"] = {
"min_year": min_year,
"max_year": max_year,
"total_models": len(graph["nodes"]),
"dated_models": len(valid_dates)
}
else:
graph["timeline_meta"] = {
"min_year": 2018,
"max_year": 2024,
"total_models": len(graph["nodes"]),
"dated_models": 0
}
return graph
def generate_html(graph: dict) -> str:
"""Return the full HTML string with inlined CSS/JS + graph JSON."""
js = JS.replace("__GRAPH_DATA__", json.dumps(graph, separators=(",", ":")))
return HTML.replace("__CSS__", CSS).replace("__JS__", js)
def generate_timeline_html(timeline: dict) -> str:
"""Return the full HTML string for chronological timeline visualization."""
js = TIMELINE_JS.replace("__TIMELINE_DATA__", json.dumps(timeline, separators=(",", ":")))
return TIMELINE_HTML.replace("__TIMELINE_CSS__", TIMELINE_CSS).replace("__TIMELINE_JS__", js)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3) HTML (D3.js) boilerplate β CSS + JS templates (unchanged design)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
CSS = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
:root{
--bg:#ffffff;
--text:#222222;
--muted:#555555;
--outline:#ffffff;
}
@media (prefers-color-scheme: dark){
:root{
--bg:#0b0d10;
--text:#e8e8e8;
--muted:#c8c8c8;
--outline:#000000;
}
}
body{ margin:0; font-family:'Inter',Arial,sans-serif; background:var(--bg); overflow:hidden; }
svg{ width:100vw; height:100vh; }
.link{ stroke:#999; stroke-opacity:.6; }
.link.cand{ stroke:#e63946; stroke-width:2.5; }
.node-label{
fill:var(--text);
pointer-events:none;
text-anchor:middle;
font-weight:600;
paint-order:stroke fill;
stroke:var(--outline);
stroke-width:3px;
}
.link-label{
fill:var(--muted);
pointer-events:none;
text-anchor:middle;
font-size:12px;
paint-order:stroke fill;
stroke:var(--bg);
stroke-width:2px;
}
.node.base image{ width:60px; height:60px; transform:translate(-30px,-30px); }
.node.derived circle{ fill:#1f77b4; }
.node.cand circle, .node.cand path{ fill:#e63946; }
#legend{
position:fixed; top:18px; left:18px;
background:rgba(255,255,255,.92);
padding:18px 28px; border-radius:10px; border:1.5px solid #bbb;
font-size:22px; box-shadow:0 2px 8px rgba(0,0,0,.08);
}
@media (prefers-color-scheme: dark){
#legend{ background:rgba(20,22,25,.92); color:#e8e8e8; border-color:#444; }
}
"""
JS = """
function updateVisibility() {
const show = document.getElementById('toggleRed').checked;
svg.selectAll('.link.cand').style('display', show ? null : 'none');
svg.selectAll('.node.cand').style('display', show ? null : 'none');
svg.selectAll('.link-label').filter(d => d.cand).style('display', show ? null : 'none');
}
document.getElementById('toggleRed').addEventListener('change', updateVisibility);
const graph = __GRAPH_DATA__;
const W = innerWidth, H = innerHeight;
const svg = d3.select('#dependency').call(d3.zoom().on('zoom', e => g.attr('transform', e.transform)));
const g = svg.append('g');
const link = g.selectAll('line')
.data(graph.links)
.join('line')
.attr('class', d => d.cand ? 'link cand' : 'link');
const linkLbl = g.selectAll('text.link-label')
.data(graph.links)
.join('text')
.attr('class', 'link-label')
.text(d => d.label);
const node = g.selectAll('g.node')
.data(graph.nodes)
.join('g')
.attr('class', d => `node ${d.cls}`)
.call(d3.drag().on('start', dragStart).on('drag', dragged).on('end', dragEnd));
const baseSel = node.filter(d => d.cls === 'base');
baseSel.append('circle').attr('r', d => 22*d.sz).attr('fill', '#ffbe0b');
node.filter(d => d.cls !== 'base').append('circle').attr('r', d => 20*d.sz);
node.append('text')
.attr('class','node-label')
.attr('dy','-2.4em')
.style('font-size', d => d.cls === 'base' ? '160px' : '120px')
.style('font-weight', d => d.cls === 'base' ? 'bold' : 'normal')
.text(d => d.id);
const sim = d3.forceSimulation(graph.nodes)
.force('link', d3.forceLink(graph.links).id(d => d.id).distance(520))
.force('charge', d3.forceManyBody().strength(-600))
.force('center', d3.forceCenter(W / 2, H / 2))
.force('collide', d3.forceCollide(d => 50));
sim.on('tick', () => {
link.attr('x1', d=>d.source.x).attr('y1', d=>d.source.y)
.attr('x2', d=>d.target.x).attr('y2', d=>d.target.y);
linkLbl.attr('x', d=> (d.source.x+d.target.x)/2)
.attr('y', d=> (d.source.y+d.target.y)/2);
node.attr('transform', d=>`translate(${d.x},${d.y})`);
});
function dragStart(e,d){ if(!e.active) sim.alphaTarget(.3).restart(); d.fx=d.x; d.fy=d.y; }
function dragged(e,d){ d.fx=e.x; d.fy=e.y; }
function dragEnd(e,d){ if(!e.active) sim.alphaTarget(0); d.fx=d.fy=null; }
"""
HTML = """
<!DOCTYPE html>
<html lang='en'><head><meta charset='UTF-8'>
<title>Transformers modular graph</title>
<style>__CSS__</style></head><body>
<div id='legend'>
π‘ base<br>π΅ modular<br>π΄ candidate<br>red edgeΒ = high embedding similarity<br><br>
<label><input type="checkbox" id="toggleRed" checked> Show candidates edges and nodes</label>
</div>
<svg id='dependency'></svg>
<script src='https://d3js.org/d3.v7.min.js'></script>
<script>__JS__</script></body></html>
"""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Timeline HTML Templates
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
TIMELINE_CSS = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
:root{
--bg:#ffffff;
--text:#222222;
--muted:#555555;
--outline:#ffffff;
--timeline-line:#dee2e6;
--base-color:#ffbe0b;
--derived-color:#1f77b4;
--candidate-color:#e63946;
}
@media (prefers-color-scheme: dark){
:root{
--bg:#0b0d10;
--text:#e8e8e8;
--muted:#c8c8c8;
--outline:#000000;
--timeline-line:#343a40;
}
}
body{
margin:0;
font-family:'Inter',Arial,sans-serif;
background:var(--bg);
overflow:hidden;
}
svg{ width:100vw; height:100vh; }
/* Enhanced link styles for chronological flow */
.link{
stroke:#4a90e2;
stroke-opacity:0.6;
stroke-width:1.5;
fill:none;
transition: stroke-opacity 0.3s ease;
}
.link.cand{
stroke:var(--candidate-color);
stroke-width:2.5;
stroke-opacity:0.8;
stroke-dasharray: 4,4;
}
.link:hover{
stroke-opacity:1;
stroke-width:3;
}
/* Improved node label styling */
.node-label{
fill:var(--text);
pointer-events:none;
text-anchor:middle;
font-weight:600;
font-size:50px;
paint-order:stroke fill;
stroke:var(--outline);
stroke-width:3px;
cursor:default;
}
/* Enhanced node styling with better visual hierarchy */
.node.base circle{
fill:var(--base-color);
stroke:#d4a000;
stroke-width:2;
}
.node.derived circle{
fill:var(--derived-color);
stroke:#1565c0;
stroke-width:2;
}
.node.cand circle{
fill:var(--candidate-color);
stroke:#c62828;
stroke-width:2;
}
.node circle{
transition: r 0.3s ease, stroke-width 0.3s ease;
cursor:grab;
}
.node:hover circle{
r:22;
stroke-width:3;
}
.node:active{
cursor:grabbing;
}
/* Timeline axis styling */
.timeline-axis {
stroke: var(--timeline-line);
stroke-width: 3px;
stroke-opacity: 0.8;
}
.timeline-tick {
stroke: var(--timeline-line);
stroke-width: 2px;
stroke-opacity: 0.6;
}
.timeline-month-tick {
stroke: var(--timeline-line);
stroke-width: 1px;
stroke-opacity: 0.4;
}
.timeline-label {
fill: var(--muted);
font-size: 40px;
font-weight: 600;
text-anchor: middle;
}
.timeline-month-label {
fill: var(--muted);
font-size: 35px;
font-weight: 400;
text-anchor: middle;
opacity: 0.7;
}
.modular-milestone {
stroke: #ff6b35;
stroke-width: 3px;
stroke-opacity: 0.8;
stroke-dasharray: 5,5;
}
.modular-milestone-label {
fill: #ff6b35;
font-size: 35px;
font-weight: 600;
text-anchor: middle;
}
/* Enhanced controls panel */
#controls{
position:fixed; top:20px; left:20px;
background:rgba(255,255,255,.95);
padding:20px 26px; border-radius:12px; border:1.5px solid #e0e0e0;
font-size:24px; box-shadow:0 4px 16px rgba(0,0,0,.12);
z-index: 100;
backdrop-filter: blur(8px);
max-width: 280px;
}
@media (prefers-color-scheme: dark){
#controls{
background:rgba(20,22,25,.95);
color:#e8e8e8;
border-color:#404040;
}
}
#controls label{
display:flex;
align-items:center;
margin-top:10px;
cursor:pointer;
}
#controls input[type="checkbox"]{
margin-right:8px;
cursor:pointer;
}
"""
TIMELINE_JS = """
function updateVisibility() {
const show = document.getElementById('toggleRed').checked;
svg.selectAll('.link.cand').style('display', show ? null : 'none');
svg.selectAll('.node.cand').style('display', show ? null : 'none');
}
document.getElementById('toggleRed').addEventListener('change', updateVisibility);
const timeline = __TIMELINE_DATA__;
const W = innerWidth, H = innerHeight;
// Create SVG with zoom behavior
const svg = d3.select('#timeline-svg');
const g = svg.append('g');
// Enhanced timeline configuration for maximum horizontal spread
const MARGIN = { top: 60, right: 200, bottom: 120, left: 200 };
const CONTENT_HEIGHT = H - MARGIN.top - MARGIN.bottom;
const VERTICAL_LANES = 4; // Number of horizontal lanes for better organization
const zoomBehavior = d3.zoom()
.scaleExtent([0.1, 8])
.on('zoom', handleZoom);
svg.call(zoomBehavior);
svg.on("click", function(event) {
if (event.target.tagName === "svg") {
node.select("circle").style("opacity", 1);
link.style("opacity", 1);
g.selectAll(".node-label").style("opacity", 1);
}
});
// Time scale for chronological positioning with much wider spread
const timeExtent = d3.extent(timeline.nodes.filter(d => d.timestamp > 0), d => d.timestamp);
let timeScale;
if (timeExtent[0] && timeExtent[1]) {
// Much wider timeline for maximum horizontal spread
const timeWidth = Math.max(W * 8, 8000);
timeScale = d3.scaleTime()
.domain(timeExtent.map(t => new Date(t * 1000)))
.range([MARGIN.left, timeWidth - MARGIN.right]);
// Timeline axis at the bottom
const timelineG = g.append('g').attr('class', 'timeline');
const timelineY = H - 80;
timelineG.append('line')
.attr('class', 'timeline-axis')
.attr('x1', MARGIN.left)
.attr('y1', timelineY)
.attr('x2', timeWidth - MARGIN.right)
.attr('y2', timelineY);
// Enhanced year markers with better spacing
const years = d3.timeYear.range(new Date(timeExtent[0] * 1000), new Date(timeExtent[1] * 1000 + 365*24*60*60*1000));
const months = d3.timeMonth.range(new Date(timeExtent[0] * 1000), new Date(timeExtent[1] * 1000 + 365*24*60*60*1000));
timelineG.selectAll('.timeline-tick')
.data(years)
.join('line')
.attr('class', 'timeline-tick')
.attr('x1', d => timeScale(d))
.attr('y1', timelineY - 15)
.attr('x2', d => timeScale(d))
.attr('y2', timelineY + 15);
timelineG.selectAll('.timeline-month-tick')
.data(months)
.join('line')
.attr('class', 'timeline-month-tick')
.attr('x1', d => timeScale(d))
.attr('y1', timelineY - 8)
.attr('x2', d => timeScale(d))
.attr('y2', timelineY + 8);
timelineG.selectAll('.timeline-label')
.data(years)
.join('text')
.attr('class', 'timeline-label')
.attr('x', d => timeScale(d))
.attr('y', timelineY + 30)
.text(d => d.getFullYear());
timelineG.selectAll('.timeline-month-label')
.data(months.filter((d, i) => i % 3 === 0))
.join('text')
.attr('class', 'timeline-month-label')
.attr('x', d => timeScale(d))
.attr('y', timelineY + 45)
.text(d => d.toLocaleDateString('en', { month: 'short' }));
// Modular logic milestone marker - May 31, 2024
const modularDate = new Date(2024, 4, 31);
timelineG.append('line')
.attr('class', 'modular-milestone')
.attr('x1', timeScale(modularDate))
.attr('y1', MARGIN.top)
.attr('x2', timeScale(modularDate))
.attr('y2', H - MARGIN.bottom);
timelineG.append('text')
.attr('class', 'modular-milestone-label')
.attr('x', timeScale(modularDate))
.attr('y', MARGIN.top - 10)
.attr('text-anchor', 'middle')
.text('Modular Logic Added');
}
function handleZoom(event) {
const { transform } = event;
g.attr('transform', transform);
}
// Enhanced curved links for better chronological flow visualization
const link = g.selectAll('path.link')
.data(timeline.links)
.join('path')
.attr('class', d => d.cand ? 'link cand' : 'link')
.attr('fill', 'none')
.attr('stroke-width', d => d.cand ? 2.5 : 1.5);
const linkedByIndex = {};
timeline.links.forEach(d => {
const s = typeof d.source === 'object' ? d.source.id : d.source;
const t = typeof d.target === 'object' ? d.target.id : d.target;
linkedByIndex[`${s},${t}`] = true;
linkedByIndex[`${t},${s}`] = true;
});
function isConnected(a, b) {
return linkedByIndex[`${a.id},${b.id}`] || a.id === b.id;
}
function isConnected(a, b) {
return linkedByIndex[`${a.id},${b.id}`] || a.id === b.id;
}
// Nodes with improved positioning strategy
const node = g.selectAll('g.node')
.data(timeline.nodes)
.join('g')
.attr('class', d => `node ${d.cls}`)
.call(d3.drag().on('start', dragStart).on('drag', dragged).on('end', dragEnd));
node.on("click", function(event, d) {
event.stopPropagation();
node.select("circle").style("opacity", o => isConnected(d, o) ? 1 : 0.1);
g.selectAll(".node-label").style("opacity", o => isConnected(d, o) ? 1 : 0.1);
link.style("opacity", o => (o.source.id === d.id || o.target.id === d.id) ? 1 : 0.1);
});
const baseSel = node.filter(d => d.cls === 'base');
baseSel.append('circle').attr('r', 20).attr('fill', '#ffbe0b');
node.filter(d => d.cls !== 'base').append('circle').attr('r', 18);
node.append('text')
.attr('class', 'node-label')
.attr('dy', '-2.2em')
.text(d => d.id);
// Organize nodes by chronological lanes for better vertical distribution
timeline.nodes.forEach((d, i) => {
if (d.timestamp > 0) {
// Assign lane based on chronological order within similar timeframes
const yearNodes = timeline.nodes.filter(n =>
n.timestamp > 0 &&
Math.abs(n.timestamp - d.timestamp) < 365*24*60*60
);
d.lane = yearNodes.indexOf(d) % VERTICAL_LANES;
} else {
d.lane = i % VERTICAL_LANES;
}
});
// Enhanced force simulation for optimal horizontal chronological layout
const sim = d3.forceSimulation(timeline.nodes)
.force('link', d3.forceLink(timeline.links).id(d => d.id)
.distance(d => d.cand ? 200 : 300)
.strength(d => d.cand ? 0.1 : 0.3))
.force('charge', d3.forceManyBody().strength(-800))
.force('collide', d3.forceCollide(d => 70).strength(1))
// Very strong chronological X positioning for proper horizontal spread
if (timeScale) {
sim.force('chronological', d3.forceX(d => {
if (d.timestamp > 0) {
return timeScale(new Date(d.timestamp * 1000));
}
// Place undated models at the end
return timeScale.range()[1] + 100;
}).strength(0.75));
}
// Organized Y positioning using lanes instead of random spread
sim.force('lanes', d3.forceY(d => {
const centerY = H / 2 - 100; // Position above timeline
const laneHeight = (H - 200) / (VERTICAL_LANES + 1); // Account for timeline space
const targetY = centerY - ((H - 200) / 2) + (d.lane + 1) * laneHeight;
return targetY;
}).strength(0.7));
// Add center force to prevent rightward drift
sim.force('center', d3.forceCenter(timeScale ? (timeScale.range()[0] + timeScale.range()[1]) / 2 : W / 2, H / 2 - 100).strength(0.1));
// Custom path generator for curved links that follow chronological flow
function linkPath(d) {
const sourceX = d.source.x || 0;
const sourceY = d.source.y || 0;
const targetX = d.target.x || 0;
const targetY = d.target.y || 0;
// Create curved paths for better visual flow
const dx = targetX - sourceX;
const dy = targetY - sourceY;
const dr = Math.sqrt(dx * dx + dy * dy) * 0.3;
// Curve direction based on chronological order
const curve = dx > 0 ? dr : -dr;
return `M${sourceX},${sourceY}A${dr},${dr} 0 0,1 ${targetX},${targetY}`;
}
function idOf(x){ return typeof x === 'object' ? x.id : x; }
function neighborsOf(id){
const out = new Set([id]);
Object.keys(linkedByIndex).forEach(k=>{
const [a,b] = k.split(',');
if(a===id) out.add(b);
if(b===id) out.add(a);
});
return out;
}
// Highlight matches + neighbors; empty query resets
function applySearch(q){
q = (q || '').trim().toLowerCase();
if(!q){
node.select("circle").style("opacity", 1);
g.selectAll(".node-label").style("opacity", 1);
link.style("opacity", 1);
return;
}
const matches = new Set(timeline.nodes.filter(n => n.id.toLowerCase().includes(q)).map(n=>n.id));
const keep = new Set();
matches.forEach(m => neighborsOf(m).forEach(x => keep.add(x)));
node.select("circle").style("opacity", d => keep.has(d.id) ? 1 : 0.08);
g.selectAll(".node-label").style("opacity", d => keep.has(d.id) ? 1 : 0.08);
link.style("opacity", d => {
const s = idOf(d.source), t = idOf(d.target);
return (keep.has(s) && keep.has(t)) ? 1 : 0.08;
});
}
// wire it up
document.getElementById('searchBox').addEventListener('input', e => applySearch(e.target.value));
sim.on('tick', () => {
link.attr('d', linkPath);
node.attr('transform', d => `translate(${d.x},${d.y})`);
});
function dragStart(e, d) {
if (!e.active) sim.alphaTarget(.3).restart();
d.fx = d.x;
d.fy = d.y;
}
function dragged(e, d) {
d.fx = e.x;
d.fy = e.y;
}
function dragEnd(e, d) {
if (!e.active) sim.alphaTarget(0);
d.fx = d.fy = null;
}
// Initialize
updateVisibility();
// Auto-fit timeline view with better zoom for horizontal spread
setTimeout(() => {
if (timeScale && timeExtent[0] && timeExtent[1]) {
const timeWidth = timeScale.range()[1] - timeScale.range()[0];
const scale = Math.min((W * 0.9) / timeWidth, 1);
const translateX = (W - timeWidth * scale) / 2;
const translateY = 0;
svg.transition()
.duration(2000)
.call(zoomBehavior.transform,
d3.zoomIdentity.translate(translateX, translateY).scale(scale));
}
}, 1500);
"""
TIMELINE_HTML = """
<!DOCTYPE html>
<html lang='en'><head><meta charset='UTF-8'>
<title>Transformers Chronological Timeline</title>
<style>__TIMELINE_CSS__</style></head><body>
<div id='controls'>
<div style='font-weight:600; margin-bottom:8px;'>Chronological Timeline</div>
π‘ base<br>π΅ modular<br>π΄ candidate<br>
<label><input type="checkbox" id="toggleRed" checked> Show candidates</label>
<input id="searchBox" type="text" placeholder="Search modelβ¦" style="margin-top:10px;width:100%;padding:6px 8px;border-radius:8px;border:1px solid #ccc;background:transparent;color:inherit;">
<div style='margin-top:10px; font-size:13px; color:var(--muted);'>
Models positioned by creation date<br>
Scroll & zoom to explore timeline
</div>
</div>
<svg id='timeline-svg'></svg>
<script src='https://d3js.org/d3.v7.min.js'></script>
<script>__TIMELINE_JS__</script></body></html>
"""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# HTML writer
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def write_html(graph_data: dict, path: Path):
path.write_text(generate_html(graph_data), encoding="utf-8")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MAIN
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
ap = argparse.ArgumentParser(description="Visualise modular dependencies + candidates")
ap.add_argument("transformers", help="Path to local π€ transformers repo root")
ap.add_argument("--multimodal", action="store_true", help="filter to models with β₯3 'pixel_values'")
ap.add_argument("--sim-threshold", type=float, default=SIM_DEFAULT)
ap.add_argument("--out", default=HTML_DEFAULT)
ap.add_argument("--sim-method", choices=["jaccard", "embedding"], default="jaccard",
help="Similarity method: 'jaccard' or 'embedding'")
args = ap.parse_args()
graph = build_graph_json(
transformers_dir=Path(args.transformers).expanduser().resolve(),
threshold=args.sim_threshold,
multimodal=args.multimodal,
sim_method=args.sim_method,
)
write_html(graph, Path(args.out).expanduser())
if __name__ == "__main__":
main()
|