File size: 7,735 Bytes
6641fa8
 
 
 
c7100d5
6641fa8
 
 
 
c7100d5
6641fa8
c7100d5
6641fa8
c7100d5
 
 
 
6641fa8
 
c7100d5
6641fa8
c7100d5
 
6641fa8
c7100d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6641fa8
 
 
 
 
 
 
c7100d5
 
 
 
31b1b7e
 
6641fa8
 
 
 
 
 
31b1b7e
6641fa8
 
 
31b1b7e
6641fa8
c7100d5
 
6641fa8
 
c7100d5
 
6641fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7100d5
 
6641fa8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# build_cache.py
import os
import io
import json
import tarfile
import subprocess
import tempfile
from pathlib import Path
from datetime import datetime, timezone

from huggingface_hub import HfApi

from modular_graph_and_candidates import (
    build_graph_json,
    generate_html,
    build_timeline_json,
    generate_timeline_html,
)

REPO_URL = os.getenv("REPO_URL", "https://github.com/huggingface/transformers")
CACHE_REPO = "Molbap/hf_cached_embeds_log"
MIN_THRESH = 0.1
MULTIMODAL = os.getenv("MULTIMODAL", "0") in {"1", "true", "True", "YES", "yes"}
SIM_METHOD = os.getenv("SIM_METHOD", "jaccard")
MODULAR_CUTOFF_ISO = "2024-05-31"

def _run(cwd: Path, *args: str) -> str:
    p = subprocess.run(["git", *args], cwd=cwd, text=True, capture_output=True, timeout=1200)
    if p.returncode != 0:
        raise RuntimeError(p.stderr.strip()[:400])
    return p.stdout

def _count_lines(text: str) -> int:
    return text.count("\n") + (1 if text and not text.endswith("\n") else 0)

def _compute_loc_growth(repo: Path) -> dict:
    try:
        _run(repo, "fetch", "--unshallow", "--tags", "--prune")
    except Exception:
        _run(repo, "fetch", "--depth=100000", "--tags", "--prune")

    pathspec = "src/transformers/models"
    lines = _run(repo, "log", "--reverse", "--format=%H|%cI", "HEAD", "--", pathspec).splitlines()
    commits = [(ln.split("|", 1)[0], ln.split("|", 1)[1]) for ln in lines if "|" in ln]
    total = len(commits)
    if total > 500:
        step = max(1, total // 300)
        commits = commits[::step]

    out = []
    for sha, date_iso in commits:
        proc = subprocess.run(
            ["git", "archive", sha, "--", pathspec],
            cwd=repo, capture_output=True, timeout=180
        )
        if proc.returncode != 0 or not proc.stdout:
            # Fallback: zero for this point; continue
            out.append({
                "sha": sha, "date": date_iso,
                "loc_modeling_all": 0, "loc_modular": 0,
                "loc_modeling_included": 0, "effective_loc": 0,
                "n_models_with_modular": 0
            })
            continue

        buf = io.BytesIO(proc.stdout)
        modeling_by_model = {}
        modular_by_model = {}

        with tarfile.open(fileobj=buf, mode="r:*") as tar:
            for m in tar.getmembers():
                if not m.isfile():
                    continue
                name = m.name
                if not name.endswith(".py"):
                    continue
                if "/models/" not in name:
                    continue
                parts = name.split("/")
                try:
                    idx = parts.index("models")
                    model = parts[idx + 1] if idx + 1 < len(parts) else ""
                except ValueError:
                    model = ""
                if not model:
                    continue
                if "/modeling_" in name or "/modular_" in name:
                    f = tar.extractfile(m)
                    if not f:
                        continue
                    try:
                        txt = f.read().decode("utf-8", errors="ignore")
                    finally:
                        f.close()
                    n = _count_lines(txt)
                    if "/modular_" in name:
                        modular_by_model[model] = modular_by_model.get(model, 0) + n
                    elif "/modeling_" in name:
                        modeling_by_model[model] = modeling_by_model.get(model, 0) + n

        modeling_all = sum(modeling_by_model.values())
        modular_loc = sum(modular_by_model.values())
        models_with_modular = set(modular_by_model.keys())
        modeling_excluded = sum(modeling_by_model.get(m, 0) for m in models_with_modular)
        modeling_included = modeling_all - modeling_excluded
        effective = modeling_included + modular_loc

        out.append({
            "sha": sha,
            "date": date_iso,
            "loc_modeling_all": modeling_all,
            "loc_modular": modular_loc,
            "loc_modeling_included": modeling_included,
            "effective_loc": effective,
            "n_models_with_modular": len(models_with_modular),
        })

    return {"series": out, "cutoff": MODULAR_CUTOFF_ISO}

def _loc_html(loc: dict) -> str:
    data = json.dumps(loc["series"], separators=(",", ":"))
    cutoff = loc["cutoff"]
    return f"""<!doctype html><meta charset=utf-8>
<title>LOC growth</title>
<div id=chart style="height:60vh;width:90vw;margin:2rem auto;"></div>
<script src="https://cdn.jsdelivr.net/npm/apexcharts"></script>
<script>
const raw={data};
const xs=raw.map(d=>new Date(d.date).getTime());
const eff=raw.map(d=>d.effective_loc);
const mod=raw.map(d=>d.loc_modular);
const mdl_all=raw.map(d=>d.loc_modeling_all);
const mdl_inc=raw.map(d=>d.loc_modeling_included);
const cutoffTs=new Date("{cutoff}T00:00:00Z").getTime();
const opts={{
  chart:{{type:"line",height:"100%"}},
  series:[
    {{name:"Effective LOC",data:xs.map((t,i)=>[t,eff[i]])}},
    {{name:"Modular LOC",data:xs.map((t,i)=>[t,mod[i]])}},
    {{name:"Modeling LOC (all)",data:xs.map((t,i)=>[t,mdl_all[i]])}},
    {{name:"Modeling LOC (included)",data:xs.map((t,i)=>[t,mdl_inc[i]])}}
  ],
  xaxis:{{type:"datetime"}},
  yaxis:{{labels:{{formatter:v=>Math.round(v)}}}},
  stroke:{{width:2}},
  tooltip:{{shared:true,x:{{format:"yyyy-MM-dd"}}}},
  annotations:{{xaxis:[{{x:cutoffTs,borderColor:"#e11d48",label:{{text:"2024-05-31 modular",style:{{color:"#fff",background:"#e11d48"}}}}}}]}}
}};
new ApexCharts(document.getElementById("chart"),opts).render();
</script>"""

def main():
    tmp = Path(tempfile.mkdtemp())
    subprocess.check_call(["git", "clone", "--depth", "1", REPO_URL, str(tmp / "repo")])
    sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=tmp / "repo", text=True).strip()
    repo_path = tmp / "repo"

    loc_growth = _compute_loc_growth(repo_path)
    loc_json_str = json.dumps(loc_growth, separators=(",", ":"))
    loc_html_str = _loc_html(loc_growth)

    graph = build_graph_json(repo_path, threshold=MIN_THRESH, multimodal=MULTIMODAL, sim_method=SIM_METHOD)
    timeline = build_timeline_json(repo_path, threshold=MIN_THRESH, multimodal=MULTIMODAL, sim_method=SIM_METHOD)
    graph_html = generate_html(graph)
    timeline_html = generate_timeline_html(timeline)

    api = HfApi()
    api.create_repo(repo_id=CACHE_REPO, repo_type="dataset", exist_ok=True)

    key = f"{sha}/{SIM_METHOD}-m{int(MULTIMODAL)}"
    latest = {
        "sha": sha,
        "updated_utc": datetime.now(timezone.utc).isoformat(),
        "defaults": {"sim_method": SIM_METHOD, "min_threshold": MIN_THRESH, "multimodal": MULTIMODAL},
        "paths": {
            "graph_json": f"graph/{key}.json",
            "graph_html": f"graph/{key}.html",
            "timeline_json": f"timeline/{key}.json",
            "timeline_html": f"timeline/{key}.html",
            "loc_json": f"loc/{key}.json",
            "loc_html": f"loc/{key}.html",
        },
    }

    def put(path_in_repo: str, text: str):
        api.upload_file(
            path_or_fileobj=io.BytesIO(text.encode("utf-8")),
            path_in_repo=path_in_repo,
            repo_id=CACHE_REPO,
            repo_type="dataset",
            commit_message=f"cache {path_in_repo}",
        )

    put(f"graph/{key}.json", json.dumps(graph, separators=(",", ":")))
    put(f"graph/{key}.html", graph_html)
    put(f"timeline/{key}.json", json.dumps(timeline, separators=(",", ":")))
    put(f"timeline/{key}.html", timeline_html)
    put(f"loc/{key}.json", loc_json_str)
    put(f"loc/{key}.html", loc_html_str)
    put("latest.json", json.dumps(latest, separators=(",", ":")))

if __name__ == "__main__":
    main()