Spaces:
Running
Running
| import os | |
| import time | |
| import gc | |
| import threading | |
| from datetime import datetime | |
| import gradio as gr | |
| import torch | |
| from transformers import pipeline, TextIteratorStreamer | |
| import spaces # Import spaces early to enable ZeroGPU support | |
| # ------------------------------ | |
| # Global Cancellation Event | |
| # ------------------------------ | |
| cancel_event = threading.Event() | |
| # ------------------------------ | |
| # Qwen3 Model Definitions | |
| # ------------------------------ | |
| MODELS = { | |
| "Qwen3-8B": {"repo_id": "Qwen/Qwen3-8B", "description": "Qwen3-8B - Largest model with highest capabilities"} | |
| } | |
| # Global cache for pipelines to avoid re-loading. | |
| PIPELINES = {} | |
| def load_pipeline(model_name): | |
| """ | |
| Load and cache a transformers pipeline for text generation. | |
| Tries bfloat16, falls back to float16 or float32 if unsupported. | |
| """ | |
| global PIPELINES | |
| if model_name in PIPELINES: | |
| return PIPELINES[model_name] | |
| repo = MODELS[model_name]["repo_id"] | |
| for dtype in (torch.bfloat16, torch.float16, torch.float32): | |
| try: | |
| pipe = pipeline( | |
| task="text-generation", | |
| model=repo, | |
| tokenizer=repo, | |
| trust_remote_code=True, | |
| torch_dtype=dtype, | |
| device_map="auto" | |
| ) | |
| PIPELINES[model_name] = pipe | |
| return pipe | |
| except Exception: | |
| continue | |
| # Final fallback | |
| pipe = pipeline( | |
| task="text-generation", | |
| model=repo, | |
| tokenizer=repo, | |
| trust_remote_code=True, | |
| device_map="auto" | |
| ) | |
| PIPELINES[model_name] = pipe | |
| return pipe | |
| def format_conversation(history, system_prompt): | |
| """ | |
| Flatten chat history and system prompt into a single string. | |
| """ | |
| prompt = system_prompt.strip() + "\n" | |
| for user_msg, assistant_msg in history: | |
| prompt += "User: " + user_msg.strip() + "\n" | |
| if assistant_msg: # might be None or empty | |
| prompt += "Assistant: " + assistant_msg.strip() + "\n" | |
| prompt += "Assistant: " | |
| return prompt | |
| # Function to get just the model name from the dropdown selection | |
| def get_model_name(full_selection): | |
| return full_selection.split(" - ")[0] | |
| # User input handling function | |
| def user_input(user_message, history): | |
| return "", history + [(user_message, None)] | |
| def bot_response(history, system_prompt, model_selection, max_tokens, temperature, top_k, top_p, repetition_penalty): | |
| """ | |
| Generate AI response to user input | |
| """ | |
| cancel_event.clear() | |
| # Extract the latest user message | |
| user_message = history[-1][0] | |
| history_without_last = history[:-1] | |
| # Get model name from selection | |
| model_name = get_model_name(model_selection) | |
| # Format the conversation | |
| conversation = format_conversation(history_without_last, system_prompt) | |
| conversation += "User: " + user_message + "\nAssistant: " | |
| try: | |
| pipe = load_pipeline(model_name) | |
| response = pipe( | |
| conversation, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| return_full_text=False | |
| )[0]["generated_text"] | |
| # Update the last message pair with the response | |
| history[-1] = (user_message, response) | |
| return history | |
| except Exception as e: | |
| history[-1] = (user_message, f"Error: {e}") | |
| return history | |
| finally: | |
| gc.collect() | |
| def get_default_system_prompt(): | |
| today = datetime.now().strftime('%Y-%m-%d') | |
| return f"""You are Qwen3, a helpful and friendly AI assistat. Be concise, accurate, and helpful in your responses.""" | |
| def clear_chat(): | |
| return [] | |
| # CSS for improved visual style | |
| css = """ | |
| .gradio-container { | |
| background-color: #f5f7fb !important; | |
| } | |
| .qwen-header { | |
| background: linear-gradient(90deg, #0099FF, #0066CC); | |
| padding: 20px; | |
| border-radius: 10px; | |
| margin-bottom: 20px; | |
| text-align: center; | |
| color: white; | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
| } | |
| .qwen-container { | |
| border-radius: 10px; | |
| box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); | |
| background: white; | |
| padding: 20px; | |
| margin-bottom: 20px; | |
| } | |
| .controls-container { | |
| background: #f0f4fa; | |
| border-radius: 10px; | |
| padding: 15px; | |
| margin-bottom: 15px; | |
| } | |
| .model-select { | |
| border: 2px solid #0099FF !important; | |
| border-radius: 8px !important; | |
| } | |
| .button-primary { | |
| background-color: #0099FF !important; | |
| color: white !important; | |
| } | |
| .button-secondary { | |
| background-color: #6c757d !important; | |
| color: white !important; | |
| } | |
| .footer { | |
| text-align: center; | |
| margin-top: 20px; | |
| font-size: 0.8em; | |
| color: #666; | |
| } | |
| """ | |
| # ------------------------------ | |
| # Gradio UI | |
| # ------------------------------ | |
| with gr.Blocks(title="Qwen3 Chat", css=css) as demo: | |
| gr.HTML(""" | |
| <div class="qwen-header"> | |
| <h1>🤖 Qwen3 Chat</h1> | |
| <p>Interact with Alibaba Cloud's Qwen3 language models</p> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| with gr.Group(elem_classes="qwen-container"): | |
| model_dd = gr.Dropdown( | |
| label="Select Qwen3 Model", | |
| choices=[f"{k} - {v['description']}" for k, v in MODELS.items()], | |
| value=f"{list(MODELS.keys())[0]} - {MODELS[list(MODELS.keys())[0]]['description']}", | |
| elem_classes="model-select" | |
| ) | |
| with gr.Group(elem_classes="controls-container"): | |
| gr.Markdown("### ⚙️ Generation Parameters") | |
| sys_prompt = gr.Textbox(label="System Prompt", lines=5, value=get_default_system_prompt()) | |
| with gr.Row(): | |
| max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens") | |
| with gr.Row(): | |
| temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature") | |
| p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P") | |
| with gr.Row(): | |
| k = gr.Slider(1, 100, value=40, step=1, label="Top-K") | |
| rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty") | |
| clear_btn = gr.Button("Clear Chat", elem_classes="button-secondary") | |
| with gr.Column(scale=7): | |
| chatbot = gr.Chatbot() | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| show_label=False, | |
| placeholder="Type your message here...", | |
| lines=2 | |
| ) | |
| submit_btn = gr.Button("Send", variant="primary", elem_classes="button-primary") | |
| gr.HTML(""" | |
| <div class="footer"> | |
| <p>Qwen3 models developed by Alibaba Cloud. Interface powered by Gradio and ZeroGPU.</p> | |
| </div> | |
| """) | |
| # Connect UI elements to functions | |
| submit_btn.click( | |
| user_input, | |
| inputs=[txt, chatbot], | |
| outputs=[txt, chatbot], | |
| queue=False | |
| ).then( | |
| bot_response, | |
| inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp], | |
| outputs=chatbot, | |
| api_name="generate" | |
| ) | |
| txt.submit( | |
| user_input, | |
| inputs=[txt, chatbot], | |
| outputs=[txt, chatbot], | |
| queue=False | |
| ).then( | |
| bot_response, | |
| inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp], | |
| outputs=chatbot, | |
| api_name="generate" | |
| ) | |
| clear_btn.click( | |
| clear_chat, | |
| outputs=[chatbot], | |
| queue=False | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |