File size: 1,075 Bytes
1ca25e1 8499113 e7945af 1ca25e1 20a8aee 1ca25e1 1951aaf 149ae1a 1ca25e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import platform
import pathlib
plt = platform.system()
pathlib.WindowsPath = pathlib.PosixPath
import requests
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'interface', 'classify_image']
# %% app.ipynb 1
from fastai.vision.all import *
import PIL.Image
PIL.Image.MAX_IMAGE_PIXELS = None
from PIL import Image
import gradio as gr
# %% app.ipynb 2
learn = load_learner('ChestXRayfine.pkl')
# %% app.ipynb 3
categories=('COVID19','Normal','Pneumonia','Turberculosis')
def classify_image(img):
pred,indx,probs=learn.predict(img)
return dict(zip(categories,map(float,probs)))
# %% app.ipynb 4
image=gr.Image()
label=gr.Label()
examples=['1.jpeg','10.png','11.png','12.jpeg','13.jpeg','14.jpeg','15.jpeg','16.jpeg','17.jpeg',
'18.jpeg','19.jpeg','2.jpeg','20.jpeg','21.jpg','22.jpg','23.jpg','3.jpeg','4.jpeg','5.jpeg',
'6.png','7.png','8.png','9.png']
interface=gr.Interface(fn=classify_image, inputs=image ,outputs=label,examples=examples)
interface.launch(inline=False)
|