|
|
|
import torch |
|
import torch.nn as nn |
|
import pytorch_lightning as pl |
|
from torch.nn import functional as F |
|
from torch.utils.data import DataLoader |
|
from ed import Transformer |
|
from tqdm import tqdm |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
|
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
def pad_seq(sequences, batch_first=True, padding_value=0.0, prepadding=True): |
|
lens = [i.shape[0]for i in sequences] |
|
padded_sequences = pad_sequence(sequences, batch_first=True, padding_value=padding_value) |
|
if prepadding: |
|
for i in range(len(lens)): |
|
padded_sequences[i] = padded_sequences[i].roll(-lens[i]) |
|
if not batch_first: |
|
padded_sequences = padded_sequences.transpose(0, 1) |
|
return padded_sequences |
|
|
|
|
|
|
|
def get_batches(X, batch_size=16): |
|
num_batches = math.ceil(len(X) / batch_size) |
|
for i in range(num_batches): |
|
x = X[i*batch_size : (i+1)*batch_size] |
|
yield x |
|
|
|
|
|
class TashkeelModel(pl.LightningModule): |
|
def __init__(self, tokenizer, max_seq_len, d_model=512, n_layers=3, n_heads=16, drop_prob=0.1, learnable_pos_emb=True): |
|
|
|
super(TashkeelModel, self).__init__() |
|
|
|
ffn_hidden = 4 * d_model |
|
src_pad_idx = tokenizer.letters_map['<PAD>'] |
|
trg_pad_idx = tokenizer.tashkeel_map['<PAD>'] |
|
enc_voc_size = len(tokenizer.letters_map) |
|
dec_voc_size = len(tokenizer.tashkeel_map) |
|
self.transformer = Transformer(src_pad_idx=src_pad_idx, |
|
trg_pad_idx=trg_pad_idx, |
|
d_model=d_model, |
|
enc_voc_size=enc_voc_size, |
|
dec_voc_size=dec_voc_size, |
|
max_len=max_seq_len, |
|
ffn_hidden=ffn_hidden, |
|
n_head=n_heads, |
|
n_layers=n_layers, |
|
drop_prob=drop_prob, |
|
learnable_pos_emb=learnable_pos_emb |
|
) |
|
|
|
self.criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.tashkeel_map['<PAD>']) |
|
self.tokenizer = tokenizer |
|
|
|
|
|
def forward(self, x, y=None): |
|
y_pred = self.transformer(x, y) |
|
return y_pred |
|
|
|
|
|
def training_step(self, batch, batch_idx): |
|
input_ids, target_ids = batch |
|
input_ids = input_ids[:, :-1] |
|
y_in = target_ids[:, :-1] |
|
y_out = target_ids[:, 1:] |
|
y_pred = self(input_ids, y_in) |
|
loss = self.criterion(y_pred.transpose(1, 2), y_out) |
|
|
|
self.log('train_loss', loss, prog_bar=True) |
|
sch = self.lr_schedulers() |
|
sch.step() |
|
self.log('lr', sch.get_last_lr()[0], prog_bar=True) |
|
return loss |
|
|
|
|
|
def validation_step(self, batch, batch_idx): |
|
input_ids, target_ids = batch |
|
input_ids = input_ids[:, :-1] |
|
y_in = target_ids[:, :-1] |
|
y_out = target_ids[:, 1:] |
|
y_pred = self(input_ids, y_in) |
|
loss = self.criterion(y_pred.transpose(1, 2), y_out) |
|
|
|
pred_text_with_tashkeels = self.tokenizer.decode(input_ids, y_pred.argmax(2).squeeze()) |
|
true_text_with_tashkeels = self.tokenizer.decode(input_ids, y_out) |
|
total_val_der_distance = 0 |
|
total_val_der_ref_length = 0 |
|
for i in range(len(true_text_with_tashkeels)): |
|
pred_text_with_tashkeel = pred_text_with_tashkeels[i] |
|
true_text_with_tashkeel = true_text_with_tashkeels[i] |
|
val_der = self.tokenizer.compute_der(true_text_with_tashkeel, pred_text_with_tashkeel) |
|
total_val_der_distance += val_der['distance'] |
|
total_val_der_ref_length += val_der['ref_length'] |
|
|
|
total_der_error = total_val_der_distance / total_val_der_ref_length |
|
self.log('val_loss', loss) |
|
self.log('val_der', torch.FloatTensor([total_der_error])) |
|
self.log('val_der_distance', torch.FloatTensor([total_val_der_distance])) |
|
self.log('val_der_ref_length', torch.FloatTensor([total_val_der_ref_length])) |
|
|
|
|
|
def test_step(self, batch, batch_idx): |
|
input_ids, target_ids = batch |
|
y_pred = self(input_ids, None) |
|
loss = self.criterion(y_pred.transpose(1, 2), target_ids) |
|
self.log('test_loss', loss) |
|
|
|
|
|
def configure_optimizers(self): |
|
optimizer = torch.optim.AdamW(self.parameters(), lr=3e-4) |
|
|
|
|
|
gamma = 1 / 1.000001 |
|
|
|
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma) |
|
opts = {"optimizer": optimizer, "lr_scheduler": lr_scheduler} |
|
return opts |
|
|
|
|
|
@torch.no_grad() |
|
def do_tashkeel_batch(self, texts, batch_size=16, verbose=True): |
|
self.eval() |
|
device = next(self.parameters()).device |
|
text_with_tashkeel = [] |
|
data_iter = get_batches(texts, batch_size) |
|
if verbose: |
|
num_batches = math.ceil(len(texts) / batch_size) |
|
data_iter = tqdm(data_iter, total=num_batches) |
|
for texts_mini in data_iter: |
|
input_ids_list = [] |
|
for text in texts_mini: |
|
input_ids, _ = self.tokenizer.encode(text, test_match=False) |
|
input_ids_list.append(input_ids) |
|
batch_input_ids = pad_seq(input_ids_list, batch_first=True, padding_value=self.tokenizer.letters_map['<PAD>'], prepadding=False) |
|
target_ids = torch.LongTensor([[self.tokenizer.tashkeel_map['<BOS>']]] * len(texts_mini)).to(device) |
|
src = batch_input_ids.to(device) |
|
|
|
src_mask = self.transformer.make_pad_mask(src, src, self.transformer.src_pad_idx, self.transformer.src_pad_idx).to(device) |
|
enc_src = self.transformer.encoder(src, src_mask) |
|
|
|
for i in range(src.shape[1] - 1): |
|
trg = target_ids |
|
src_trg_mask = self.transformer.make_pad_mask(trg, src, self.transformer.trg_pad_idx, self.transformer.src_pad_idx).to(device) |
|
trg_mask = self.transformer.make_pad_mask(trg, trg, self.transformer.trg_pad_idx, self.transformer.trg_pad_idx).to(device) * \ |
|
self.transformer.make_no_peak_mask(trg, trg).to(device) |
|
|
|
preds = self.transformer.decoder(trg, enc_src, trg_mask, src_trg_mask) |
|
|
|
target_ids = torch.cat([target_ids, preds[:, -1].argmax(1).unsqueeze(1)], axis=1) |
|
target_ids[self.tokenizer.letters_map[' '] == src[:, :target_ids.shape[1]]] = self.tokenizer.tashkeel_map[self.tokenizer.no_tashkeel_tag] |
|
|
|
text_with_tashkeel_mini = self.tokenizer.decode(src, target_ids) |
|
text_with_tashkeel += text_with_tashkeel_mini |
|
return text_with_tashkeel |
|
|
|
|
|
@torch.no_grad() |
|
def do_tashkeel(self, text): |
|
return self.do_tashkeel_batch([text])[0] |
|
|