File size: 18,344 Bytes
bcc0c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
"""
@author : Hyunwoong
@when : 2019-12-18
@homepage : https://github.com/gusdnd852
"""
import math
import torch
import torch.nn as nn
class EncoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
self.norm1 = LayerNorm(d_model=d_model)
self.dropout1 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.norm2 = LayerNorm(d_model=d_model)
self.dropout2 = nn.Dropout(p=drop_prob)
def forward(self, x, s_mask):
# 1. compute self attention
_x = x
x = self.attention(q=x, k=x, v=x, mask=s_mask)
# 2. add and norm
x = self.dropout1(x)
x = self.norm1(x + _x)
# 3. positionwise feed forward network
_x = x
x = self.ffn(x)
# 4. add and norm
x = self.dropout2(x)
x = self.norm2(x + _x)
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
super(DecoderLayer, self).__init__()
self.self_attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
self.norm1 = LayerNorm(d_model=d_model)
self.dropout1 = nn.Dropout(p=drop_prob)
self.enc_dec_attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
self.norm2 = LayerNorm(d_model=d_model)
self.dropout2 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.norm3 = LayerNorm(d_model=d_model)
self.dropout3 = nn.Dropout(p=drop_prob)
def forward(self, dec, enc, t_mask, s_mask):
# 1. compute self attention
_x = dec
x = self.self_attention(q=dec, k=dec, v=dec, mask=t_mask)
# 2. add and norm
x = self.dropout1(x)
x = self.norm1(x + _x)
if enc is not None:
# 3. compute encoder - decoder attention
_x = x
x = self.enc_dec_attention(q=x, k=enc, v=enc, mask=s_mask)
# 4. add and norm
x = self.dropout2(x)
x = self.norm2(x + _x)
# 5. positionwise feed forward network
_x = x
x = self.ffn(x)
# 6. add and norm
x = self.dropout3(x)
x = self.norm3(x + _x)
return x
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
# input is 4 dimension tensor
# [batch_size, head, length, d_tensor]
batch_size, head, length, d_tensor = k.size()
# 1. dot product Query with Key^T to compute similarity
k_t = k.transpose(2, 3) # transpose
score = (q @ k_t) / math.sqrt(d_tensor) # scaled dot product
# 2. apply masking (opt)
if mask is not None:
score = score.masked_fill(mask == 0, -10000)
# 3. pass them softmax to make [0, 1] range
score = self.softmax(score)
# 4. multiply with Value
v = score @ v
return v, score
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model, bias=False)
self.w_k = nn.Linear(d_model, d_model, bias=False)
self.w_v = nn.Linear(d_model, d_model, bias=False)
self.w_concat = nn.Linear(d_model, d_model, bias=False)
def forward(self, q, k, v, mask=None):
# 1. dot product with weight matrices
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
# 2. split tensor by number of heads
q, k, v = self.split(q), self.split(k), self.split(v)
# 3. do scale dot product to compute similarity
out, attention = self.attention(q, k, v, mask=mask)
# 4. concat and pass to linear layer
out = self.concat(out)
out = self.w_concat(out)
# 5. visualize attention map
# TODO : we should implement visualization
return out
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor).transpose(1, 2)
# it is similar with group convolution (split by number of heads)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size, length, d_model)
return tensor
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
var = x.var(-1, unbiased=False, keepdim=True)
# '-1' means last dimension.
out = (x - mean) / torch.sqrt(var + self.eps)
out = self.gamma * out + self.beta
return out
class TransformerEmbedding(nn.Module):
"""
token embedding + positional encoding (sinusoid)
positional encoding can give positional information to network
"""
def __init__(self, vocab_size, d_model, max_len, drop_prob, padding_idx, learnable_pos_emb=True):
"""
class for word embedding that included positional information
:param vocab_size: size of vocabulary
:param d_model: dimensions of model
"""
super(TransformerEmbedding, self).__init__()
self.tok_emb = TokenEmbedding(vocab_size, d_model, padding_idx)
if learnable_pos_emb:
self.pos_emb = LearnablePositionalEncoding(d_model, max_len)
else:
self.pos_emb = SinusoidalPositionalEncoding(d_model, max_len)
self.drop_out = nn.Dropout(p=drop_prob)
def forward(self, x):
tok_emb = self.tok_emb(x)
pos_emb = self.pos_emb(x).to(tok_emb.device)
return self.drop_out(tok_emb + pos_emb)
class TokenEmbedding(nn.Embedding):
"""
Token Embedding using torch.nn
they will dense representation of word using weighted matrix
"""
def __init__(self, vocab_size, d_model, padding_idx):
"""
class for token embedding that included positional information
:param vocab_size: size of vocabulary
:param d_model: dimensions of model
"""
super(TokenEmbedding, self).__init__(vocab_size, d_model, padding_idx=padding_idx)
class SinusoidalPositionalEncoding(nn.Module):
"""
compute sinusoid encoding.
"""
def __init__(self, d_model, max_len):
"""
constructor of sinusoid encoding class
:param d_model: dimension of model
:param max_len: max sequence length
"""
super(SinusoidalPositionalEncoding, self).__init__()
# same size with input matrix (for adding with input matrix)
self.encoding = torch.zeros(max_len, d_model)
self.encoding.requires_grad = False # we don't need to compute gradient
pos = torch.arange(0, max_len)
pos = pos.float().unsqueeze(dim=1)
# 1D => 2D unsqueeze to represent word's position
_2i = torch.arange(0, d_model, step=2).float()
# 'i' means index of d_model (e.g. embedding size = 50, 'i' = [0,50])
# "step=2" means 'i' multiplied with two (same with 2 * i)
self.encoding[:, 0::2] = torch.sin(pos / (10000 ** (_2i / d_model)))
self.encoding[:, 1::2] = torch.cos(pos / (10000 ** (_2i / d_model)))
# compute positional encoding to consider positional information of words
def forward(self, x):
# self.encoding
# [max_len = 512, d_model = 512]
batch_size, seq_len = x.size()
# [batch_size = 128, seq_len = 30]
return self.encoding[:seq_len, :]
# [seq_len = 30, d_model = 512]
# it will add with tok_emb : [128, 30, 512]
class LearnablePositionalEncoding(nn.Module):
"""
compute sinusoid encoding.
"""
def __init__(self, d_model, max_seq_len):
"""
constructor of learnable positonal encoding class
:param d_model: dimension of model
:param max_seq_len: max sequence length
"""
super(LearnablePositionalEncoding, self).__init__()
self.max_seq_len = max_seq_len
self.wpe = nn.Embedding(max_seq_len, d_model)
def forward(self, x):
# self.encoding
# [max_len = 512, d_model = 512]
device = x.device
batch_size, seq_len = x.size()
assert seq_len <= self.max_seq_len, f"Cannot forward sequence of length {seq_len}, max_seq_len is {self.max_seq_len}"
pos = torch.arange(0, seq_len, dtype=torch.long, device=device) # shape (seq_len)
pos_emb = self.wpe(pos) # position embeddings of shape (seq_len, d_model)
return pos_emb
# [seq_len = 30, d_model = 512]
# it will add with tok_emb : [128, 30, 512]
class Encoder(nn.Module):
def __init__(self, enc_voc_size, max_len, d_model, ffn_hidden, n_head, n_layers, drop_prob, padding_idx, learnable_pos_emb=True):
super().__init__()
self.emb = TransformerEmbedding(d_model=d_model,
max_len=max_len,
vocab_size=enc_voc_size,
drop_prob=drop_prob,
padding_idx=padding_idx,
learnable_pos_emb=learnable_pos_emb
)
self.layers = nn.ModuleList([EncoderLayer(d_model=d_model,
ffn_hidden=ffn_hidden,
n_head=n_head,
drop_prob=drop_prob)
for _ in range(n_layers)])
def forward(self, x, s_mask):
x = self.emb(x)
for layer in self.layers:
x = layer(x, s_mask)
return x
class Decoder(nn.Module):
def __init__(self, dec_voc_size, max_len, d_model, ffn_hidden, n_head, n_layers, drop_prob, padding_idx, learnable_pos_emb=True):
super().__init__()
self.emb = TransformerEmbedding(d_model=d_model,
drop_prob=drop_prob,
max_len=max_len,
vocab_size=dec_voc_size,
padding_idx=padding_idx,
learnable_pos_emb=learnable_pos_emb
)
self.layers = nn.ModuleList([DecoderLayer(d_model=d_model,
ffn_hidden=ffn_hidden,
n_head=n_head,
drop_prob=drop_prob)
for _ in range(n_layers)])
self.linear = nn.Linear(d_model, dec_voc_size)
def forward(self, trg, enc_src, trg_mask, src_mask):
trg = self.emb(trg)
for layer in self.layers:
trg = layer(trg, enc_src, trg_mask, src_mask)
# pass to LM head
output = self.linear(trg)
return output
class Transformer(nn.Module):
def __init__(self, src_pad_idx, trg_pad_idx, enc_voc_size, dec_voc_size, d_model, n_head, max_len,
ffn_hidden, n_layers, drop_prob, learnable_pos_emb=True):
super().__init__()
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.encoder = Encoder(d_model=d_model,
n_head=n_head,
max_len=max_len,
ffn_hidden=ffn_hidden,
enc_voc_size=enc_voc_size,
drop_prob=drop_prob,
n_layers=n_layers,
padding_idx=src_pad_idx,
learnable_pos_emb=learnable_pos_emb)
self.decoder = Decoder(d_model=d_model,
n_head=n_head,
max_len=max_len,
ffn_hidden=ffn_hidden,
dec_voc_size=dec_voc_size,
drop_prob=drop_prob,
n_layers=n_layers,
padding_idx=trg_pad_idx,
learnable_pos_emb=learnable_pos_emb)
def get_device(self):
return next(self.parameters()).device
def forward(self, src, trg):
device = self.get_device()
src_mask = self.make_pad_mask(src, src, self.src_pad_idx, self.src_pad_idx).to(device)
src_trg_mask = self.make_pad_mask(trg, src, self.trg_pad_idx, self.src_pad_idx).to(device)
trg_mask = self.make_pad_mask(trg, trg, self.trg_pad_idx, self.trg_pad_idx).to(device) * \
self.make_no_peak_mask(trg, trg).to(device)
#print(src_mask)
#print('-'*100)
#print(trg_mask)
enc_src = self.encoder(src, src_mask)
output = self.decoder(trg, enc_src, trg_mask, src_trg_mask)
return output
def make_pad_mask(self, q, k, q_pad_idx, k_pad_idx):
len_q, len_k = q.size(1), k.size(1)
# batch_size x 1 x 1 x len_k
k = k.ne(k_pad_idx).unsqueeze(1).unsqueeze(2)
# batch_size x 1 x len_q x len_k
k = k.repeat(1, 1, len_q, 1)
# batch_size x 1 x len_q x 1
q = q.ne(q_pad_idx).unsqueeze(1).unsqueeze(3)
# batch_size x 1 x len_q x len_k
q = q.repeat(1, 1, 1, len_k)
mask = k & q
return mask
def make_no_peak_mask(self, q, k):
len_q, len_k = q.size(1), k.size(1)
# len_q x len_k
mask = torch.tril(torch.ones(len_q, len_k)).type(torch.BoolTensor)
return mask
def make_pad_mask(x, pad_idx):
q = k = x
q_pad_idx = k_pad_idx = pad_idx
len_q, len_k = q.size(1), k.size(1)
# batch_size x 1 x 1 x len_k
k = k.ne(k_pad_idx).unsqueeze(1).unsqueeze(2)
# batch_size x 1 x len_q x len_k
k = k.repeat(1, 1, len_q, 1)
# batch_size x 1 x len_q x 1
q = q.ne(q_pad_idx).unsqueeze(1).unsqueeze(3)
# batch_size x 1 x len_q x len_k
q = q.repeat(1, 1, 1, len_k)
mask = k & q
return mask
from torch.nn.utils.rnn import pad_sequence
# x_list is a list of tensors of shape TxH where T is the seqlen and H is the feats dim
def pad_seq_v2(sequences, batch_first=True, padding_value=0.0, prepadding=True):
lens = [i.shape[0]for i in sequences]
padded_sequences = pad_sequence(sequences, batch_first=True, padding_value=padding_value) # NxTxH
if prepadding:
for i in range(len(lens)):
padded_sequences[i] = padded_sequences[i].roll(-lens[i])
if not batch_first:
padded_sequences = padded_sequences.transpose(0, 1) # TxNxH
return padded_sequences
if __name__ == '__main__':
import torch
import random
import numpy as np
rand_seed = 10
device = 'cpu'
# model parameter setting
batch_size = 128
max_len = 256
d_model = 512
n_layers = 3
n_heads = 16
ffn_hidden = 2048
drop_prob = 0.1
# optimizer parameter setting
init_lr = 1e-5
factor = 0.9
adam_eps = 5e-9
patience = 10
warmup = 100
epoch = 1000
clip = 1.0
weight_decay = 5e-4
inf = float('inf')
src_pad_idx = 2
trg_pad_idx = 3
enc_voc_size = 37
dec_voc_size = 15
model = Transformer(src_pad_idx=src_pad_idx,
trg_pad_idx=trg_pad_idx,
d_model=d_model,
enc_voc_size=enc_voc_size,
dec_voc_size=dec_voc_size,
max_len=max_len,
ffn_hidden=ffn_hidden,
n_head=n_heads,
n_layers=n_layers,
drop_prob=drop_prob
).to(device)
random.seed(rand_seed)
# Set the seed to 0 for reproducible results
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
x_list = [
torch.tensor([[1, 1]]).transpose(0, 1), # 2
torch.tensor([[1, 1, 1, 1, 1, 1, 1]]).transpose(0, 1), # 7
torch.tensor([[1, 1, 1]]).transpose(0, 1) # 3
]
src_pad_idx = model.src_pad_idx
trg_pad_idx = model.trg_pad_idx
src = pad_seq_v2(x_list, padding_value=src_pad_idx, prepadding=False).squeeze(2)
trg = pad_seq_v2(x_list, padding_value=trg_pad_idx, prepadding=False).squeeze(2)
out = model(src, trg)
|