|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
import tensorflow as tf |
|
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor |
|
import cv2 |
|
import json |
|
|
|
|
|
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars") |
|
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg") |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars") |
|
dl_model = tf.keras.models.load_model('improved_car_damage_prediction_model.h5') |
|
|
|
|
|
with open('cars117.json', 'r', encoding='utf-8') as f: |
|
data = json.load(f) |
|
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', [])))) |
|
|
|
def process_image(image): |
|
|
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
|
|
|
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
damage_output = damage_seg_model(**inputs).logits |
|
damage_features = damage_output.squeeze().detach().numpy() |
|
|
|
|
|
damage_heatmap = create_heatmap(damage_features) |
|
damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1])) |
|
|
|
|
|
image_array = np.array(image) |
|
damage_mask = np.argmax(damage_features, axis=0) |
|
damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST) |
|
overlay = np.zeros_like(image_array) |
|
overlay[damage_mask_resized > 0] = [255, 0, 0] |
|
annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0) |
|
|
|
|
|
with torch.no_grad(): |
|
part_output = part_seg_model(**inputs).logits |
|
part_features = part_output.squeeze().detach().numpy() |
|
part_heatmap = create_heatmap(part_features) |
|
part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1])) |
|
|
|
|
|
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))]) |
|
|
|
|
|
prediction = dl_model.predict(np.array([input_vector])) |
|
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1] |
|
predicted_parts.sort(key=lambda x: x[1], reverse=True) |
|
|
|
return (Image.fromarray(annotated_image), |
|
Image.fromarray(damage_heatmap_resized), |
|
Image.fromarray(part_heatmap_resized), |
|
"\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]])) |
|
|
|
def create_heatmap(features): |
|
heatmap = np.sum(features, axis=0) |
|
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) |
|
heatmap = np.uint8(255 * heatmap) |
|
return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) |
|
|
|
iface = gr.Interface( |
|
fn=process_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[ |
|
gr.Image(type="pil", label="Annotated Damage"), |
|
gr.Image(type="pil", label="Damage Heatmap"), |
|
gr.Image(type="pil", label="Part Segmentation Heatmap"), |
|
gr.Textbox(label="Predicted Parts to Replace") |
|
], |
|
title="Car Damage Assessment", |
|
description="Upload an image of a damaged car to get an assessment." |
|
) |
|
|
|
iface.launch() |