File size: 13,257 Bytes
a4bb933
 
 
 
1149eec
a4bb933
 
 
22f62c8
10e2a17
a4bb933
10e2a17
75e415a
737fce5
 
10e2a17
098bbfd
10e2a17
 
 
 
 
 
737fce5
 
 
10e2a17
 
 
 
 
 
 
 
 
 
22f62c8
10e2a17
22f62c8
10e2a17
 
 
 
 
 
22f62c8
10e2a17
22f62c8
10e2a17
22f62c8
 
10e2a17
 
22f62c8
10e2a17
 
 
 
 
 
 
22f62c8
 
10e2a17
 
22f62c8
10e2a17
 
 
22f62c8
10e2a17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f62c8
 
10e2a17
 
22f62c8
10e2a17
22f62c8
10e2a17
 
 
 
 
 
 
 
 
 
75e415a
10e2a17
 
 
 
 
 
 
 
 
 
 
 
a4bb933
10e2a17
 
 
 
 
 
 
 
 
 
 
 
a4bb933
 
10e2a17
 
 
 
 
 
a4bb933
10e2a17
 
 
 
 
a4bb933
10e2a17
 
 
 
 
 
 
a4bb933
10e2a17
a4bb933
 
10e2a17
a4bb933
10e2a17
 
a4bb933
10e2a17
 
 
 
 
 
 
 
 
 
 
 
 
22f62c8
10e2a17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f62c8
10e2a17
 
 
 
 
22f62c8
a4bb933
10e2a17
 
 
 
 
 
 
 
 
 
a4bb933
 
 
 
 
 
 
 
10e2a17
a4bb933
1149eec
10e2a17
a4bb933
 
10e2a17
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import torch
from PIL import Image
import numpy as np
import tensorflow as tf
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
import cv2
import json
import os
from huggingface_hub import login

# --- HUGGING FACE LOGIN ---

tokenn = os.getenv('HF_AUTH_TOKEN')

try:
    login(token=tokenn)
    print("Successfully logged in to Hugging Face Hub.")
except Exception as e:
    print(f"Hugging Face Hub login failed: {e}. Token will be used directly in from_pretrained calls.")

# Load Hugging Face models
try:
    part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars", token=tokenn)
    damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg", token=tokenn)
    feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars", token=tokenn)
    print("Hugging Face models loaded successfully.")
except OSError as e:
    print(f"Error loading Hugging Face models: {e}")
    print("Please ensure the model identifiers are correct and you have the necessary access rights.")
    part_seg_model = None
    damage_seg_model = None
    feature_extractor = None
    # Critical Hugging Face models failed to load; dependent features will be unavailable.

# Load TensorFlow model for damage prediction
def load_model(model_path):
    print(f"Attempting to load TensorFlow model from: {model_path}")
    print(f"Current working directory: {os.getcwd()}")

    if not os.path.exists(model_path):
        print(f"Error: Model file '{model_path}' not found in current directory: {os.getcwd()}")
        print(f"Files in current directory: {os.listdir('.')}")
        raise Exception(f"Model file '{model_path}' not found.")

    try:
        # Attempt 1: Load the entire model directly
        model = tf.keras.models.load_model(model_path)
        print("Successfully loaded the entire TensorFlow model.")
        return model
    except Exception as e:
        print(f"Failed to load entire TensorFlow model. Error: {str(e)}")

        try:
            # Attempt 2: Load model architecture from JSON and weights from H5
            json_path = model_path.replace('.h5', '.json')
            if not os.path.exists(json_path):
                print(f"Error: JSON model architecture file '{json_path}' not found.")
                raise FileNotFoundError(f"JSON model architecture file '{json_path}' not found.")

            with open(json_path, 'r') as json_file:
                model_json = json_file.read()
            model = tf.keras.models.model_from_json(model_json)
            model.load_weights(model_path) # .h5 file should contain weights
            print("Successfully loaded TensorFlow model from JSON and weights.")
            return model
        except Exception as e_json:
            print(f"Failed to load TensorFlow model from JSON and weights. Error: {str(e_json)}")

            try:
                # Attempt 3: Load only weights into a predefined architecture
                # This architecture must match the one used when 'improved_car_damage_prediction_model(2).h5' was saved.
                input_shape_val = 33  # Default; will be updated if HF models provide info
                num_classes_val = 29  # Default; should match the number of parts in all_parts

                # Calculate expected input_shape from loaded Hugging Face models' configurations
                # Input to this TF model is a concatenation of mean features from part and damage segmentation.
                if part_seg_model and damage_seg_model:
                     actual_input_shape = part_seg_model.config.num_labels + damage_seg_model.config.num_labels
                     print(f"Calculated input_shape for TensorFlow model based on HF models: {actual_input_shape}")
                     if input_shape_val != actual_input_shape:
                         print(f"Note: Overriding predefined input_shape ({input_shape_val}) with calculated shape ({actual_input_shape}).")
                         input_shape_val = actual_input_shape
                else:
                    print(f"Warning: Hugging Face models not loaded. Using default input_shape={input_shape_val} for TensorFlow model. This may lead to errors if incorrect.")

                inputs_tf = tf.keras.Input(shape=(input_shape_val,))
                x = tf.keras.layers.Dense(256, activation='relu')(inputs_tf)
                x = tf.keras.layers.Dense(128, activation='relu')(x)
                x = tf.keras.layers.Dense(64, activation='relu')(x)
                outputs_tf = tf.keras.layers.Dense(num_classes_val, activation='sigmoid')(x)
                model = tf.keras.Model(inputs=inputs_tf, outputs=outputs_tf)
                model.load_weights(model_path)
                print("Successfully loaded weights into predefined TensorFlow model architecture.")
                return model
            except Exception as e_weights:
                print(f"Failed to load weights into predefined TensorFlow architecture. Error: {str(e_weights)}")
                detailed_error_message = (
                    "All attempts to load the TensorFlow model failed.\n"
                    f"Attempt 1 (load_model): {str(e)}\n"
                    f"Attempt 2 (from JSON): {str(e_json)}\n"
                    f"Attempt 3 (load_weights): {str(e_weights)}"
                )
                print(detailed_error_message)
                raise Exception("All attempts to load the TensorFlow model failed.")

# Initialize TensorFlow model variable
dl_model = None
if part_seg_model and damage_seg_model and feature_extractor: # Proceed only if HF models loaded
    try:
        dl_model = load_model('improved_car_damage_prediction_model(2).h5')
        print("TensorFlow damage prediction model loaded successfully.")
        dl_model.summary()
    except Exception as e:
        print(f"Failed to load the TensorFlow damage prediction model: {str(e)}")
        dl_model = None # Ensure it's None if loading fails
else:
    print("Skipping TensorFlow model loading because prerequisite Hugging Face models failed to load.")

# Load parts list from JSON
PARTS_LIST_FILE = 'cars117.json'
all_parts = []
if os.path.exists(PARTS_LIST_FILE):
    with open(PARTS_LIST_FILE, 'r', encoding='utf-8') as f:
        data = json.load(f)
    all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))
    if dl_model and dl_model.output_shape[-1] != len(all_parts):
        print(f"Warning: TensorFlow model output classes ({dl_model.output_shape[-1]}) "
              f"does not match number of parts in JSON ({len(all_parts)}). Predictions may be misaligned.")
else:
    print(f"Error: Parts list file '{PARTS_LIST_FILE}' not found. Predicted part names will be unavailable.")

def process_image(image):
    if not part_seg_model or not damage_seg_model or not feature_extractor:
        # Create placeholder images if HF models aren't loaded
        dummy_img = Image.new('RGB', (256, 256), color = 'grey')
        return (dummy_img, dummy_img, dummy_img,
                "Hugging Face models failed to load. Cannot process image.")

    if image.mode != 'RGB':
        image = image.convert('RGB') # Ensure image is in RGB format

    inputs_hf = feature_extractor(images=image, return_tensors="pt") # Prepare for Hugging Face models

    # Damage segmentation
    with torch.no_grad():
        damage_output_logits = damage_seg_model(**inputs_hf).logits
    # Squeeze batch dim, move to CPU, convert to numpy: (num_damage_labels, H, W)
    damage_features = damage_output_logits.squeeze(0).cpu().detach().numpy()

    damage_heatmap_raw = create_heatmap(damage_features) # Create heatmap from damage features
    damage_heatmap_resized = cv2.resize(damage_heatmap_raw, (image.size[0], image.size[1]))

    image_array = np.array(image)
    damage_mask = np.argmax(damage_features, axis=0) # Create mask from highest probability class
    damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
    overlay = np.zeros_like(image_array)
    overlay[damage_mask_resized > 0] = [255, 0, 0]  # Apply red overlay for damage
    annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)

    # Part segmentation
    with torch.no_grad():
        part_output_logits = part_seg_model(**inputs_hf).logits
    # Squeeze batch dim, move to CPU, convert to numpy: (num_part_labels, H, W)
    part_features = part_output_logits.squeeze(0).cpu().detach().numpy()
    part_heatmap_raw = create_heatmap(part_features) # Create heatmap from part features
    part_heatmap_resized = cv2.resize(part_heatmap_raw, (image.size[0], image.size[1]))

    # Prepare input vector for the TensorFlow damage prediction model
    # Calculate mean of features over spatial dimensions for each label map
    part_feature_vector = part_features.mean(axis=(1, 2))    # Shape: (num_part_labels,)
    damage_feature_vector = damage_features.mean(axis=(1, 2)) # Shape: (num_damage_labels,)
    input_vector_tf = np.concatenate([part_feature_vector, damage_feature_vector])

    prediction_text = "TensorFlow part prediction model (dl_model) not loaded. Predictions unavailable."
    if dl_model is not None:
        if not all_parts:
             prediction_text = "Parts list ('all_parts') is empty. Cannot map predictions to part names."
        else:
            expected_input_shape_tf = dl_model.input_shape[1]
            if input_vector_tf.shape[0] != expected_input_shape_tf:
                prediction_text = (f"Error: Input vector size for TF model ({input_vector_tf.shape[0]}) "
                                   f"does not match model's expected input size ({expected_input_shape_tf}). "
                                   "Check Segformer model label counts or TF model definition.")
            else:
                try:
                    # Add batch dimension for TensorFlow model prediction
                    prediction = dl_model.predict(np.expand_dims(input_vector_tf, axis=0))
                    if prediction.shape[1] != len(all_parts):
                        prediction_text = (f"Error: Prediction output size ({prediction.shape[1]}) "
                                           f"does not match number of parts ({len(all_parts)}). "
                                           "Check TF model's output layer or the parts list JSON.")
                    else:
                        predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
                        predicted_parts.sort(key=lambda x: x[1], reverse=True) # Sort by probability
                        if predicted_parts:
                            prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]]) # Top 5
                        else:
                            prediction_text = "No parts predicted with confidence > 0.1."
                except Exception as e_predict:
                    prediction_text = f"Error during TensorFlow model prediction: {str(e_predict)}"
    else:
        prediction_text = "TensorFlow damage prediction model (dl_model) failed to load. Unable to make part predictions."

    return (Image.fromarray(annotated_image),
            Image.fromarray(damage_heatmap_resized),
            Image.fromarray(part_heatmap_resized),
            prediction_text)

def create_heatmap(features_maps): # Input features_maps shape: (num_labels, H, W)
    # Creates a general heatmap by summing features across label channels.
    # For per-label specific heatmaps, this function would need to process each channel individually.
    heatmap = np.sum(features_maps, axis=0)
    if heatmap.max() == heatmap.min(): # Handle flat heatmaps to avoid division by zero
        heatmap_normalized = np.zeros_like(heatmap, dtype=np.float32)
    else:
        heatmap_normalized = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
    heatmap_uint8 = np.uint8(255 * heatmap_normalized)
    return cv2.applyColorMap(heatmap_uint8, cv2.COLORMAP_JET)

iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Image(type="pil", label="Annotated Damage"),
        gr.Image(type="pil", label="Damage Heatmap"),
        gr.Image(type="pil", label="Part Segmentation Heatmap"),
        gr.Textbox(label="Predicted Parts to Replace (Top 5)")
    ],
    title="Car Damage Assessment",
    description="Upload an image of a damaged car. Ensure 'improved_car_damage_prediction_model(2).h5' and 'cars117.json' are in the script's directory."
)

if __name__ == '__main__':
    if not os.path.exists('improved_car_damage_prediction_model(2).h5'):
        print("WARNING: TensorFlow model 'improved_car_damage_prediction_model(2).h5' not found. Part prediction will be unavailable.")
    if not os.path.exists(PARTS_LIST_FILE):
        print(f"WARNING: Parts list '{PARTS_LIST_FILE}' not found. Part names for predictions will be unavailable.")
    if not (part_seg_model and damage_seg_model and feature_extractor):
         print("WARNING: One or more Hugging Face models could not be loaded. The application functionality will be limited.")
    iface.launch()