Spaces:
Sleeping
Sleeping
Add application file
Browse files- .gitignore +6 -0
- README.md +101 -9
- app.py +131 -0
- config.json +4 -0
- requirements.txt +7 -0
- sample_images/image_five.jpg +0 -0
- sample_images/image_four.jpg +0 -0
- sample_images/image_one.jpg +0 -0
- sample_images/image_six.jpg +0 -0
- sample_images/image_three.jpg +0 -0
- sample_images/image_two.jpg +0 -0
- yolo-human-parse-epoch-125.pt +3 -0
- yolo/BodyMask.py +248 -0
- yolo/utils.py +291 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio_cached_examples/
|
| 3 |
+
checkpoint-*
|
| 4 |
+
*/example.ipynb
|
| 5 |
+
|
| 6 |
+
*.pyc
|
README.md
CHANGED
|
@@ -1,12 +1,104 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
- image-classification
|
| 6 |
+
widget:
|
| 7 |
+
- src: >-
|
| 8 |
+
https://huggingface.co/jordandavis/yolo-human-parse/blob/main/sample_images/image_one.jpg
|
| 9 |
+
example_title: Straight ahead
|
| 10 |
+
- src: >-
|
| 11 |
+
Looking back
|
| 12 |
+
example_title: Teapot
|
| 13 |
+
- src: >-
|
| 14 |
+
https://huggingface.co/jordandavis/yolo-human-parse/blob/main/sample_images/image_three.jpg
|
| 15 |
+
example_title: Sweats
|
| 16 |
---
|
| 17 |
|
| 18 |
+
|
| 19 |
+
# YOLO Segmentation Model for Human Body Parts and Objects
|
| 20 |
+
|
| 21 |
+
This repository contains a fine-tuned YOLO (You Only Look Once) segmentation model designed to detect and segment various human body parts and objects in images.
|
| 22 |
+
|
| 23 |
+
## Model Overview
|
| 24 |
+
|
| 25 |
+
The model is based on the YOLO architecture and has been fine-tuned to detect and segment the following classes:
|
| 26 |
+
|
| 27 |
+
0. Hair
|
| 28 |
+
1. Face
|
| 29 |
+
2. Neck
|
| 30 |
+
3. Arm
|
| 31 |
+
4. Hand
|
| 32 |
+
5. Back
|
| 33 |
+
6. Leg
|
| 34 |
+
7. Foot
|
| 35 |
+
8. Outfit
|
| 36 |
+
9. Person
|
| 37 |
+
10. Phone
|
| 38 |
+
|
| 39 |
+
## Installation
|
| 40 |
+
|
| 41 |
+
To use this model, you'll need to have the appropriate YOLO framework installed. Please follow these steps:
|
| 42 |
+
|
| 43 |
+
1. Clone this repository:
|
| 44 |
+
```
|
| 45 |
+
git clone https://github.com/your-username/yolo-segmentation-human-parts.git
|
| 46 |
+
cd yolo-segmentation-human-parts
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
2. Install the required dependencies:
|
| 50 |
+
```
|
| 51 |
+
pip install -r requirements.txt
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## Usage
|
| 55 |
+
|
| 56 |
+
To use the model for inference, you can use the following Python script:
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from ultralytics import YOLO
|
| 60 |
+
|
| 61 |
+
# Load the model
|
| 62 |
+
model = YOLO('path/to/your/model.pt')
|
| 63 |
+
|
| 64 |
+
# Perform inference on an image
|
| 65 |
+
results = model('path/to/your/image.jpg')
|
| 66 |
+
|
| 67 |
+
# Process the results
|
| 68 |
+
for result in results:
|
| 69 |
+
boxes = result.boxes # Bounding boxes
|
| 70 |
+
masks = result.masks # Segmentation masks
|
| 71 |
+
# Further processing...
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## Training
|
| 75 |
+
|
| 76 |
+
If you want to further fine-tune the model on your own dataset, please follow these steps:
|
| 77 |
+
|
| 78 |
+
1. Prepare your dataset in the YOLO format.
|
| 79 |
+
2. Modify the `data.yaml` file to reflect your dataset structure and classes.
|
| 80 |
+
3. Run the training script:
|
| 81 |
+
```
|
| 82 |
+
python train.py --img 640 --batch 16 --epochs 100 --data data.yaml --weights yolov5s-seg.pt
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Evaluation
|
| 86 |
+
|
| 87 |
+
To evaluate the model's performance on your test set, use:
|
| 88 |
+
|
| 89 |
+
```
|
| 90 |
+
python val.py --weights path/to/your/model.pt --data data.yaml --task segment
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Contributing
|
| 94 |
+
|
| 95 |
+
Contributions to improve the model or extend its capabilities are welcome. Please submit a pull request or open an issue to discuss proposed changes.
|
| 96 |
+
|
| 97 |
+
## License
|
| 98 |
+
|
| 99 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 100 |
+
|
| 101 |
+
## Acknowledgments
|
| 102 |
+
|
| 103 |
+
- Thanks to the YOLO team for the original implementation.
|
| 104 |
+
- Gratitude to all contributors who helped in fine-tuning and improving this model.
|
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
from yolo.BodyMask import BodyMask
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from matplotlib import patches
|
| 8 |
+
from skimage.transform import resize
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
|
| 12 |
+
model_id = os.path.abspath("yolo-human-parse-epoch-125.pt")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def display_image_with_masks(image, results, cols=4):
|
| 16 |
+
# Convert PIL Image to numpy array
|
| 17 |
+
image_np = np.array(image)
|
| 18 |
+
|
| 19 |
+
# Check image dimensions
|
| 20 |
+
if image_np.ndim != 3 or image_np.shape[2] != 3:
|
| 21 |
+
raise ValueError("Image must be a 3-dimensional array with 3 color channels")
|
| 22 |
+
|
| 23 |
+
# Number of masks
|
| 24 |
+
n = len(results)
|
| 25 |
+
rows = (n + cols - 1) // cols # Calculate required number of rows
|
| 26 |
+
|
| 27 |
+
# Setting up the plot
|
| 28 |
+
fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 5 * rows))
|
| 29 |
+
axs = np.array(axs).reshape(-1) # Flatten axs array for easy indexing
|
| 30 |
+
|
| 31 |
+
for i, result in enumerate(results):
|
| 32 |
+
mask = result["mask"]
|
| 33 |
+
label = result["label"]
|
| 34 |
+
score = float(result["score"])
|
| 35 |
+
|
| 36 |
+
# Convert PIL mask to numpy array and resize if necessary
|
| 37 |
+
mask_np = np.array(mask)
|
| 38 |
+
if mask_np.shape != image_np.shape[:2]:
|
| 39 |
+
mask_np = resize(
|
| 40 |
+
mask_np, image_np.shape[:2], mode="constant", anti_aliasing=False
|
| 41 |
+
)
|
| 42 |
+
mask_np = (mask_np > 0.5).astype(
|
| 43 |
+
np.uint8
|
| 44 |
+
) # Threshold back to binary after resize
|
| 45 |
+
|
| 46 |
+
# Create an overlay where mask is True
|
| 47 |
+
overlay = np.zeros_like(image_np)
|
| 48 |
+
overlay[mask_np > 0] = [0, 0, 255] # Applying blue color on the mask area
|
| 49 |
+
|
| 50 |
+
# Combine the image and the overlay
|
| 51 |
+
combined = image_np.copy()
|
| 52 |
+
indices = np.where(mask_np > 0)
|
| 53 |
+
combined[indices] = combined[indices] * 0.5 + overlay[indices] * 0.5
|
| 54 |
+
|
| 55 |
+
# Show the combined image
|
| 56 |
+
ax = axs[i]
|
| 57 |
+
ax.imshow(combined)
|
| 58 |
+
ax.axis("off")
|
| 59 |
+
ax.set_title(f"Label: {label}, Score: {score:.2f}", fontsize=12)
|
| 60 |
+
rect = patches.Rectangle(
|
| 61 |
+
(0, 0),
|
| 62 |
+
image_np.shape[1],
|
| 63 |
+
image_np.shape[0],
|
| 64 |
+
linewidth=1,
|
| 65 |
+
edgecolor="r",
|
| 66 |
+
facecolor="none",
|
| 67 |
+
)
|
| 68 |
+
ax.add_patch(rect)
|
| 69 |
+
|
| 70 |
+
# Hide unused subplots if the total number of masks is not a multiple of cols
|
| 71 |
+
for idx in range(i + 1, rows * cols):
|
| 72 |
+
axs[idx].axis("off")
|
| 73 |
+
|
| 74 |
+
plt.tight_layout()
|
| 75 |
+
|
| 76 |
+
# Save the plot to a bytes buffer
|
| 77 |
+
buf = io.BytesIO()
|
| 78 |
+
plt.savefig(buf, format="png")
|
| 79 |
+
buf.seek(0)
|
| 80 |
+
|
| 81 |
+
# Clear the current figure
|
| 82 |
+
plt.close(fig)
|
| 83 |
+
|
| 84 |
+
return buf
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def perform_segmentation(input_image):
|
| 88 |
+
bm = BodyMask(input_image, model_id=model_id, resize_to=640)
|
| 89 |
+
results = bm.results
|
| 90 |
+
buf = display_image_with_masks(input_image, results)
|
| 91 |
+
|
| 92 |
+
# Convert BytesIO to PIL Image
|
| 93 |
+
img = Image.open(buf)
|
| 94 |
+
return img
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# Get example images
|
| 98 |
+
example_images = [
|
| 99 |
+
os.path.join("sample_images", f)
|
| 100 |
+
for f in os.listdir("sample_images")
|
| 101 |
+
if f.endswith((".png", ".jpg", ".jpeg"))
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
with gr.Blocks() as demo:
|
| 105 |
+
gr.Markdown("# YOLO Segmentation Demo with BodyMask")
|
| 106 |
+
gr.Markdown(
|
| 107 |
+
"Upload an image or select an example to see the YOLO segmentation results."
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
with gr.Row():
|
| 111 |
+
with gr.Column():
|
| 112 |
+
input_image = gr.Image(type="pil", label="Input Image", height=512)
|
| 113 |
+
segment_button = gr.Button("Perform Segmentation")
|
| 114 |
+
|
| 115 |
+
output_image = gr.Image(label="Segmentation Result")
|
| 116 |
+
|
| 117 |
+
gr.Examples(
|
| 118 |
+
examples=example_images,
|
| 119 |
+
inputs=input_image,
|
| 120 |
+
outputs=output_image,
|
| 121 |
+
fn=perform_segmentation,
|
| 122 |
+
cache_examples=True,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
segment_button.click(
|
| 126 |
+
fn=perform_segmentation,
|
| 127 |
+
inputs=input_image,
|
| 128 |
+
outputs=output_image,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
demo.launch()
|
config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"input_size": 640,
|
| 3 |
+
"task": "segment"
|
| 4 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.30.3
|
| 2 |
+
gradio==4.44.0
|
| 3 |
+
matplotlib==3.8.4
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
Pillow==10.4.0
|
| 6 |
+
skimage==0.0
|
| 7 |
+
ultralytics==8.2.97
|
sample_images/image_five.jpg
ADDED
|
sample_images/image_four.jpg
ADDED
|
sample_images/image_one.jpg
ADDED
|
sample_images/image_six.jpg
ADDED
|
sample_images/image_three.jpg
ADDED
|
sample_images/image_two.jpg
ADDED
|
yolo-human-parse-epoch-125.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a78215ccb99e5185249f41d03c17abef91f41dae3be2dd66f9633303856ed702
|
| 3 |
+
size 431332491
|
yolo/BodyMask.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from functools import lru_cache
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
from diffusers.utils import load_image
|
| 8 |
+
from PIL import Image, ImageChops, ImageFilter
|
| 9 |
+
from ultralytics import YOLO
|
| 10 |
+
from .utils import *
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def dilate_mask(mask, dilate_factor=6, blur_radius=2, erosion_factor=2):
|
| 14 |
+
if not mask:
|
| 15 |
+
return None
|
| 16 |
+
# Convert PIL image to NumPy array if necessary
|
| 17 |
+
if isinstance(mask, Image.Image):
|
| 18 |
+
mask = np.array(mask)
|
| 19 |
+
|
| 20 |
+
# Ensure mask is in uint8 format
|
| 21 |
+
mask = mask.astype(np.uint8)
|
| 22 |
+
|
| 23 |
+
# Apply dilation
|
| 24 |
+
kernel = np.ones((dilate_factor, dilate_factor), np.uint8)
|
| 25 |
+
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
|
| 26 |
+
|
| 27 |
+
# Apply erosion for refinement
|
| 28 |
+
kernel = np.ones((erosion_factor, erosion_factor), np.uint8)
|
| 29 |
+
eroded_mask = cv2.erode(dilated_mask, kernel, iterations=1)
|
| 30 |
+
|
| 31 |
+
# Apply Gaussian blur to smooth the edges
|
| 32 |
+
blurred_mask = cv2.GaussianBlur(
|
| 33 |
+
eroded_mask, (2 * blur_radius + 1, 2 * blur_radius + 1), 0
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Convert back to PIL image
|
| 37 |
+
smoothed_mask = Image.fromarray(blurred_mask).convert("L")
|
| 38 |
+
|
| 39 |
+
# Optionally, apply an additional blur for extra smoothness using PIL
|
| 40 |
+
smoothed_mask = smoothed_mask.filter(ImageFilter.GaussianBlur(radius=blur_radius))
|
| 41 |
+
|
| 42 |
+
return smoothed_mask
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@lru_cache(maxsize=1)
|
| 46 |
+
def get_model(model_id):
|
| 47 |
+
model = YOLO(model=model_id)
|
| 48 |
+
return model
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def combine_masks(masks: List[dict], labels: List[str], is_label=True) -> Image.Image:
|
| 52 |
+
"""
|
| 53 |
+
Combine masks with the specified labels into a single mask, optimized for speed and non-overlapping of excluded masks.
|
| 54 |
+
|
| 55 |
+
Parameters:
|
| 56 |
+
- masks (List[dict]): A list of dictionaries, each containing the mask under a 'mask' key and its label under a 'label' key.
|
| 57 |
+
- labels (List[str]): A list of labels to include in the combination.
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
- Image.Image: The combined mask as a PIL Image object, or None if no masks are combined.
|
| 61 |
+
"""
|
| 62 |
+
labels_set = set(labels) # Convert labels list to a set for O(1) lookups
|
| 63 |
+
|
| 64 |
+
# Filter and convert mask images based on the specified labels
|
| 65 |
+
mask_images = [
|
| 66 |
+
mask["mask"].convert("L")
|
| 67 |
+
for mask in masks
|
| 68 |
+
if (mask["label"] in labels_set) == is_label
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
# Ensure there is at least one mask to combine
|
| 72 |
+
if not mask_images:
|
| 73 |
+
return None # Or raise an appropriate error, e.g., ValueError("No masks found for the specified labels.")
|
| 74 |
+
|
| 75 |
+
# Initialize the combined mask with the first mask
|
| 76 |
+
combined_mask = mask_images[0]
|
| 77 |
+
|
| 78 |
+
# Combine the remaining masks with the existing combined_mask using a bitwise OR operation to ensure non-overlap
|
| 79 |
+
for mask in mask_images[1:]:
|
| 80 |
+
combined_mask = ImageChops.lighter(combined_mask, mask)
|
| 81 |
+
|
| 82 |
+
return combined_mask
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
body_labels = ["hair", "face", "arm", "hand", "leg", "foot", "outfit"]
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class BodyMask:
|
| 89 |
+
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
image_path,
|
| 93 |
+
model_id,
|
| 94 |
+
labels=body_labels,
|
| 95 |
+
overlay="mask",
|
| 96 |
+
widen_box=0,
|
| 97 |
+
elongate_box=0,
|
| 98 |
+
resize_to=640,
|
| 99 |
+
dilate_factor=0,
|
| 100 |
+
is_label=False,
|
| 101 |
+
resize_to_nearest_eight=False,
|
| 102 |
+
verbose=True,
|
| 103 |
+
remove_overlap=True,
|
| 104 |
+
):
|
| 105 |
+
self.image_path = image_path
|
| 106 |
+
self.image = self.get_image(
|
| 107 |
+
resize_to=resize_to, resize_to_nearest_eight=resize_to_nearest_eight
|
| 108 |
+
)
|
| 109 |
+
self.labels = labels
|
| 110 |
+
self.is_label = is_label
|
| 111 |
+
self.model_id = model_id
|
| 112 |
+
self.model = get_model(self.model_id)
|
| 113 |
+
self.model_labels = self.model.names
|
| 114 |
+
self.verbose = verbose
|
| 115 |
+
self.results = self.get_results()
|
| 116 |
+
self.dilate_factor = dilate_factor
|
| 117 |
+
self.body_mask = self.get_body_mask()
|
| 118 |
+
self.box = get_bounding_box(self.body_mask)
|
| 119 |
+
self.body_box = self.get_body_box(
|
| 120 |
+
remove_overlap=remove_overlap, widen=widen_box, elongate=elongate_box
|
| 121 |
+
)
|
| 122 |
+
if overlay == "box":
|
| 123 |
+
self.overlay = overlay_mask(
|
| 124 |
+
self.image, self.body_box, opacity=0.9, color="red"
|
| 125 |
+
)
|
| 126 |
+
else:
|
| 127 |
+
self.overlay = overlay_mask(
|
| 128 |
+
self.image, self.body_mask, opacity=0.9, color="red"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def get_image(self, resize_to, resize_to_nearest_eight):
|
| 132 |
+
image = load_image(self.image_path)
|
| 133 |
+
if resize_to:
|
| 134 |
+
image = resize_preserve_aspect_ratio(image, resize_to)
|
| 135 |
+
if resize_to_nearest_eight:
|
| 136 |
+
image = resize_image_to_nearest_eight(image)
|
| 137 |
+
else:
|
| 138 |
+
image = image
|
| 139 |
+
return image
|
| 140 |
+
|
| 141 |
+
def get_body_mask(self):
|
| 142 |
+
body_mask = combine_masks(self.results, self.labels, self.is_label)
|
| 143 |
+
return dilate_mask(body_mask, self.dilate_factor)
|
| 144 |
+
|
| 145 |
+
def get_results(self):
|
| 146 |
+
imgsz = max(self.image.size)
|
| 147 |
+
results = self.model(
|
| 148 |
+
self.image, retina_masks=True, imgsz=imgsz, verbose=self.verbose
|
| 149 |
+
)[0]
|
| 150 |
+
self.masks, self.boxes, self.scores, self.phrases = unload(
|
| 151 |
+
results, self.model_labels
|
| 152 |
+
)
|
| 153 |
+
results = format_results(
|
| 154 |
+
self.masks,
|
| 155 |
+
self.boxes,
|
| 156 |
+
self.scores,
|
| 157 |
+
self.phrases,
|
| 158 |
+
self.model_labels,
|
| 159 |
+
person_masks_only=False,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# filter out lower score results
|
| 163 |
+
masks_to_filter = ["hair"]
|
| 164 |
+
results = filter_highest_score(results, ["hair", "face", "phone"])
|
| 165 |
+
return results
|
| 166 |
+
|
| 167 |
+
def display_results(self):
|
| 168 |
+
if len(self.masks) < 4:
|
| 169 |
+
cols = len(self.masks)
|
| 170 |
+
else:
|
| 171 |
+
cols = 4
|
| 172 |
+
display_image_with_masks(self.image, self.results, cols=cols)
|
| 173 |
+
|
| 174 |
+
def get_mask(self, mask_label):
|
| 175 |
+
assert mask_label in self.phrases, "Mask label not found in results"
|
| 176 |
+
return [f for f in self.results if f.get("label") == mask_label]
|
| 177 |
+
|
| 178 |
+
def combine_masks(self, mask_labels: List, no_labels=None, is_label=True):
|
| 179 |
+
"""
|
| 180 |
+
Combine the masks included in the labels list or all of the masks not in the list
|
| 181 |
+
"""
|
| 182 |
+
if not is_label:
|
| 183 |
+
mask_labels = [
|
| 184 |
+
phrase for phrase in self.phrases if phrase not in mask_labels
|
| 185 |
+
]
|
| 186 |
+
masks = [
|
| 187 |
+
row.get("mask") for row in self.results if row.get("label") in mask_labels
|
| 188 |
+
]
|
| 189 |
+
if len(masks) == 0:
|
| 190 |
+
return None
|
| 191 |
+
combined_mask = masks[0]
|
| 192 |
+
for mask in masks[1:]:
|
| 193 |
+
combined_mask = ImageChops.lighter(combined_mask, mask)
|
| 194 |
+
return combined_mask
|
| 195 |
+
|
| 196 |
+
def get_body_box(self, remove_overlap=True, widen=0, elongate=0):
|
| 197 |
+
body_box = get_bounding_box_mask(self.body_mask, widen=widen, elongate=elongate)
|
| 198 |
+
if remove_overlap:
|
| 199 |
+
body_box = self.remove_overlap(body_box)
|
| 200 |
+
return body_box
|
| 201 |
+
|
| 202 |
+
def remove_overlap(self, body_box):
|
| 203 |
+
"""
|
| 204 |
+
Remove mask regions that overlap with unwanted labels
|
| 205 |
+
"""
|
| 206 |
+
# convert mask to numpy array
|
| 207 |
+
box_array = np.array(body_box)
|
| 208 |
+
|
| 209 |
+
# combine the masks for those labels
|
| 210 |
+
mask = self.combine_masks(mask_labels=self.labels, is_label=True)
|
| 211 |
+
|
| 212 |
+
# convert mask to numpy array
|
| 213 |
+
mask_array = np.array(mask)
|
| 214 |
+
|
| 215 |
+
# where the mask array is white set the box array to black
|
| 216 |
+
box_array[mask_array == 255] = 0
|
| 217 |
+
|
| 218 |
+
# convert the box array to an image
|
| 219 |
+
mask_image = Image.fromarray(box_array)
|
| 220 |
+
return mask_image
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
if __name__ == "__main__":
|
| 224 |
+
url = "https://sjc1.vultrobjects.com/photo-storage/images/525d1f68-314c-455b-a8b6-f5dc3fa044e4.jpeg"
|
| 225 |
+
image_name = url.split("/")[-1]
|
| 226 |
+
labels = ["face", "hair", "phone", "hand"]
|
| 227 |
+
image = load_image(url)
|
| 228 |
+
image_size = image.size
|
| 229 |
+
# Get the original size of the image
|
| 230 |
+
original_size = image.size
|
| 231 |
+
|
| 232 |
+
# Create body mask
|
| 233 |
+
body_mask = BodyMask(
|
| 234 |
+
image,
|
| 235 |
+
overlay="box",
|
| 236 |
+
labels=labels,
|
| 237 |
+
widen_box=50,
|
| 238 |
+
elongate_box=10,
|
| 239 |
+
dilate_factor=0,
|
| 240 |
+
resize_to=640,
|
| 241 |
+
is_label=False,
|
| 242 |
+
remove_overlap=True,
|
| 243 |
+
verbose=False,
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Resize the image back to the original size
|
| 247 |
+
image = body_mask.image.resize(original_size)
|
| 248 |
+
body_mask.body_box.save(image_name)
|
yolo/utils.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.patches as patches
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def unload_mask(mask):
|
| 8 |
+
mask = mask.cpu().numpy().squeeze()
|
| 9 |
+
mask = mask.astype(np.uint8) * 255
|
| 10 |
+
return Image.fromarray(mask)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def unload_box(box):
|
| 14 |
+
return box.cpu().numpy().tolist()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def masks_overlap(mask1, mask2):
|
| 18 |
+
return np.any(np.logical_and(mask1, mask2))
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def remove_non_person_masks(person_mask, formatted_results):
|
| 22 |
+
return [
|
| 23 |
+
f
|
| 24 |
+
for f in formatted_results
|
| 25 |
+
if f.get("label") == "person" or masks_overlap(person_mask, f.get("mask"))
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def format_masks(masks):
|
| 30 |
+
return [unload_mask(mask) for mask in masks]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def format_boxes(boxes):
|
| 34 |
+
return [unload_box(box) for box in boxes]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def format_scores(scores):
|
| 38 |
+
return scores.cpu().numpy().tolist()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def unload(result, labels_dict):
|
| 42 |
+
masks = format_masks(result.masks.data)
|
| 43 |
+
boxes = format_boxes(result.boxes.xyxy)
|
| 44 |
+
scores = format_scores(result.boxes.conf)
|
| 45 |
+
labels = result.boxes.cls
|
| 46 |
+
labels = [int(label.item()) for label in labels]
|
| 47 |
+
phrases = [labels_dict[label] for label in labels]
|
| 48 |
+
return masks, boxes, scores, phrases
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def format_results(masks, boxes, scores, labels, labels_dict, person_masks_only=True):
|
| 52 |
+
if isinstance(list(labels_dict.keys())[0], int):
|
| 53 |
+
labels_dict = {v: k for k, v in labels_dict.items()}
|
| 54 |
+
|
| 55 |
+
# check that the person mask is present
|
| 56 |
+
if person_masks_only:
|
| 57 |
+
assert "person" in labels, "Person mask not present in results"
|
| 58 |
+
results_dict = []
|
| 59 |
+
for row in zip(labels, scores, boxes, masks):
|
| 60 |
+
label, score, box, mask = row
|
| 61 |
+
label_id = labels_dict[label]
|
| 62 |
+
results_row = dict(
|
| 63 |
+
label=label, score=score, mask=mask, box=box, label_id=label_id
|
| 64 |
+
)
|
| 65 |
+
results_dict.append(results_row)
|
| 66 |
+
results_dict = sorted(results_dict, key=lambda x: x["label"])
|
| 67 |
+
if person_masks_only:
|
| 68 |
+
# Get the person mask
|
| 69 |
+
person_mask = [f for f in results_dict if f.get("label") == "person"][0]["mask"]
|
| 70 |
+
assert person_mask is not None, "Person mask not found in results"
|
| 71 |
+
|
| 72 |
+
# Remove any results that do no overlap with the person
|
| 73 |
+
results_dict = remove_non_person_masks(person_mask, results_dict)
|
| 74 |
+
return results_dict
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def filter_highest_score(results, labels):
|
| 78 |
+
"""
|
| 79 |
+
Filter results to remove entries with lower scores for specified labels.
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
results (list): List of dictionaries containing 'label', 'score', and other keys.
|
| 83 |
+
labels (list): List of labels to filter.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
list: Filtered results with only the highest score for each specified label.
|
| 87 |
+
"""
|
| 88 |
+
# Dictionary to keep track of the highest score entry for each label
|
| 89 |
+
label_highest = {}
|
| 90 |
+
|
| 91 |
+
# First pass: identify the highest score for each label
|
| 92 |
+
for result in results:
|
| 93 |
+
label = result["label"]
|
| 94 |
+
if label in labels:
|
| 95 |
+
if (
|
| 96 |
+
label not in label_highest
|
| 97 |
+
or result["score"] > label_highest[label]["score"]
|
| 98 |
+
):
|
| 99 |
+
label_highest[label] = result
|
| 100 |
+
|
| 101 |
+
# Second pass: construct the filtered list while preserving the order
|
| 102 |
+
filtered_results = []
|
| 103 |
+
seen_labels = set()
|
| 104 |
+
|
| 105 |
+
for result in results:
|
| 106 |
+
label = result["label"]
|
| 107 |
+
if label in labels:
|
| 108 |
+
if label in seen_labels:
|
| 109 |
+
continue
|
| 110 |
+
if result == label_highest[label]:
|
| 111 |
+
filtered_results.append(result)
|
| 112 |
+
seen_labels.add(label)
|
| 113 |
+
else:
|
| 114 |
+
filtered_results.append(result)
|
| 115 |
+
|
| 116 |
+
return filtered_results
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def display_image_with_masks(image, results, cols=4, return_images=False):
|
| 120 |
+
# Convert PIL Image to numpy array
|
| 121 |
+
image_np = np.array(image)
|
| 122 |
+
|
| 123 |
+
# Check image dimensions
|
| 124 |
+
if image_np.ndim != 3 or image_np.shape[2] != 3:
|
| 125 |
+
raise ValueError("Image must be a 3-dimensional array with 3 color channels")
|
| 126 |
+
|
| 127 |
+
# Number of masks
|
| 128 |
+
n = len(results)
|
| 129 |
+
rows = (n + cols - 1) // cols # Calculate required number of rows
|
| 130 |
+
|
| 131 |
+
# Setting up the plot
|
| 132 |
+
fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 5 * rows))
|
| 133 |
+
axs = np.array(axs).reshape(-1) # Flatten axs array for easy indexing
|
| 134 |
+
for i, result in enumerate(results):
|
| 135 |
+
mask = result["mask"]
|
| 136 |
+
label = result["label"]
|
| 137 |
+
score = float(result["score"])
|
| 138 |
+
|
| 139 |
+
# Convert PIL mask to numpy array and resize if necessary
|
| 140 |
+
mask_np = np.array(mask)
|
| 141 |
+
if mask_np.shape != image_np.shape[:2]:
|
| 142 |
+
mask_np = resize(
|
| 143 |
+
mask_np, image_np.shape[:2], mode="constant", anti_aliasing=False
|
| 144 |
+
)
|
| 145 |
+
mask_np = (mask_np > 0.5).astype(
|
| 146 |
+
np.uint8
|
| 147 |
+
) # Threshold back to binary after resize
|
| 148 |
+
|
| 149 |
+
# Create an overlay where mask is True
|
| 150 |
+
overlay = np.zeros_like(image_np)
|
| 151 |
+
overlay[mask_np > 0] = [0, 0, 255] # Applying blue color on the mask area
|
| 152 |
+
|
| 153 |
+
# Combine the image and the overlay
|
| 154 |
+
combined = image_np.copy()
|
| 155 |
+
indices = np.where(mask_np > 0)
|
| 156 |
+
combined[indices] = combined[indices] * 0.5 + overlay[indices] * 0.5
|
| 157 |
+
|
| 158 |
+
# Show the combined image
|
| 159 |
+
ax = axs[i]
|
| 160 |
+
ax.imshow(combined)
|
| 161 |
+
ax.axis("off")
|
| 162 |
+
ax.set_title(f"Label: {label}, Score: {score:.2f}", fontsize=12)
|
| 163 |
+
rect = patches.Rectangle(
|
| 164 |
+
(0, 0),
|
| 165 |
+
image_np.shape[1],
|
| 166 |
+
image_np.shape[0],
|
| 167 |
+
linewidth=1,
|
| 168 |
+
edgecolor="r",
|
| 169 |
+
facecolor="none",
|
| 170 |
+
)
|
| 171 |
+
ax.add_patch(rect)
|
| 172 |
+
|
| 173 |
+
# Hide unused subplots if the total number of masks is not a multiple of cols
|
| 174 |
+
for idx in range(i + 1, rows * cols):
|
| 175 |
+
axs[idx].axis("off")
|
| 176 |
+
plt.tight_layout()
|
| 177 |
+
plt.show()
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def get_bounding_box(mask):
|
| 181 |
+
"""
|
| 182 |
+
Given a segmentation mask, return the bounding box for the mask object.
|
| 183 |
+
"""
|
| 184 |
+
# Find indices where the mask is non-zero
|
| 185 |
+
coords = np.argwhere(mask)
|
| 186 |
+
# Get the minimum and maximum x and y coordinates
|
| 187 |
+
x_min, y_min = np.min(coords, axis=0)
|
| 188 |
+
x_max, y_max = np.max(coords, axis=0)
|
| 189 |
+
# Return the bounding box coordinates
|
| 190 |
+
return (y_min, x_min, y_max, x_max)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def get_bounding_box_mask(segmentation_mask, widen=0, elongate=0):
|
| 194 |
+
# Convert the PIL segmentation mask to a NumPy array
|
| 195 |
+
mask_array = np.array(segmentation_mask)
|
| 196 |
+
|
| 197 |
+
# Find the coordinates of the non-zero pixels
|
| 198 |
+
non_zero_y, non_zero_x = np.nonzero(mask_array)
|
| 199 |
+
|
| 200 |
+
# Calculate the bounding box coordinates
|
| 201 |
+
min_x, max_x = np.min(non_zero_x), np.max(non_zero_x)
|
| 202 |
+
min_y, max_y = np.min(non_zero_y), np.max(non_zero_y)
|
| 203 |
+
|
| 204 |
+
if widen > 0:
|
| 205 |
+
min_x = max(0, min_x - widen)
|
| 206 |
+
max_x = min(mask_array.shape[1], max_x + widen)
|
| 207 |
+
|
| 208 |
+
if elongate > 0:
|
| 209 |
+
min_y = max(0, min_y - elongate)
|
| 210 |
+
max_y = min(mask_array.shape[0], max_y + elongate)
|
| 211 |
+
|
| 212 |
+
# Create a new blank image for the bounding box mask
|
| 213 |
+
bounding_box_mask = Image.new("1", segmentation_mask.size)
|
| 214 |
+
|
| 215 |
+
# Draw the filled bounding box on the blank image
|
| 216 |
+
draw = ImageDraw.Draw(bounding_box_mask)
|
| 217 |
+
draw.rectangle([(min_x, min_y), (max_x, max_y)], fill=1)
|
| 218 |
+
|
| 219 |
+
return bounding_box_mask
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
colors = {
|
| 223 |
+
"blue": (136, 207, 249),
|
| 224 |
+
"red": (255, 0, 0),
|
| 225 |
+
"green": (0, 255, 0),
|
| 226 |
+
"yellow": (255, 255, 0),
|
| 227 |
+
"purple": (128, 0, 128),
|
| 228 |
+
"cyan": (0, 255, 255),
|
| 229 |
+
"magenta": (255, 0, 255),
|
| 230 |
+
"orange": (255, 165, 0),
|
| 231 |
+
"lime": (50, 205, 50),
|
| 232 |
+
"pink": (255, 192, 203),
|
| 233 |
+
"brown": (139, 69, 19),
|
| 234 |
+
"gray": (128, 128, 128),
|
| 235 |
+
"black": (0, 0, 0),
|
| 236 |
+
"white": (255, 255, 255),
|
| 237 |
+
"gold": (255, 215, 0),
|
| 238 |
+
"silver": (192, 192, 192),
|
| 239 |
+
"beige": (245, 245, 220),
|
| 240 |
+
"navy": (0, 0, 128),
|
| 241 |
+
"maroon": (128, 0, 0),
|
| 242 |
+
"olive": (128, 128, 0),
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def overlay_mask(image, mask, opacity=0.5, color="blue"):
|
| 247 |
+
"""
|
| 248 |
+
Takes in a PIL image and a PIL boolean image mask. Overlay the mask on the image
|
| 249 |
+
and color the mask with a low opacity blue with hex #88CFF9.
|
| 250 |
+
"""
|
| 251 |
+
# Convert the boolean mask to an image with alpha channel
|
| 252 |
+
alpha = mask.convert("L").point(lambda x: 255 if x == 255 else 0, mode="1")
|
| 253 |
+
|
| 254 |
+
# Choose the color
|
| 255 |
+
r, g, b = colors[color]
|
| 256 |
+
|
| 257 |
+
color_mask = Image.new("RGBA", mask.size, (r, g, b, int(opacity * 255)))
|
| 258 |
+
mask_rgba = Image.composite(
|
| 259 |
+
color_mask, Image.new("RGBA", mask.size, (0, 0, 0, 0)), alpha
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Create a new RGBA image to overlay the mask on
|
| 263 |
+
overlay = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
| 264 |
+
|
| 265 |
+
# Paste the mask onto the overlay
|
| 266 |
+
overlay.paste(mask_rgba, (0, 0))
|
| 267 |
+
|
| 268 |
+
# Create a new image to return by blending the original image and the overlay
|
| 269 |
+
result = Image.alpha_composite(image.convert("RGBA"), overlay)
|
| 270 |
+
|
| 271 |
+
# Convert the result back to the original mode and return it
|
| 272 |
+
return result.convert(image.mode)
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def resize_preserve_aspect_ratio(image, max_side=512):
|
| 276 |
+
width, height = image.size
|
| 277 |
+
scale = min(max_side / width, max_side / height)
|
| 278 |
+
new_width = int(width * scale)
|
| 279 |
+
new_height = int(height * scale)
|
| 280 |
+
return image.resize((new_width, new_height))
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def round_to_nearest_eigth(value):
|
| 284 |
+
return int((value // 8 * 8))
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def resize_image_to_nearest_eight(image):
|
| 288 |
+
width, height = image.size
|
| 289 |
+
width, height = round_to_nearest_eigth(width), round_to_nearest_eigth(height)
|
| 290 |
+
image = image.resize((width, height))
|
| 291 |
+
return image
|