Spaces:
Sleeping
Sleeping
File size: 50,506 Bytes
a2465fe 4187f56 a2465fe 4eb5b6c a2465fe 4eb5b6c 9178ad9 4eb5b6c 9178ad9 4eb5b6c 9178ad9 a2465fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 |
import os
import shutil
import streamlit as st
from fpdf import FPDF
from chromadb import Client
from chromadb.config import Settings
import json
import chromadb
from langchain_community.utilities import SerpAPIWrapper
from llama_index.core import VectorStoreIndex
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain.chains import LLMChain
from langchain.agents import AgentType, Tool, initialize_agent, AgentExecutor
from llama_parse import LlamaParse
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_huggingface import HuggingFaceEmbeddings
from llama_index.core import SimpleDirectoryReader
from dotenv import load_dotenv, find_dotenv
from streamlit_chat import message
from langchain_community.vectorstores import Chroma
from langchain_community.utilities import SerpAPIWrapper
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.document_loaders import UnstructuredXMLLoader
from langchain_community.document_loaders import CSVLoader
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
import joblib
import nltk
from dotenv import load_dotenv, find_dotenv
import uuid
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from yachalk import chalk
from langchain.vectorstores import PGVector
from langchain.document_loaders import PyPDFLoader, UnstructuredPDFLoader, PyPDFium2Loader
from langchain.document_loaders import PyPDFDirectoryLoader
## Import all the chains.
from chains_v2.create_questions import QuestionCreationChain
from chains_v2.most_pertinent_question import MostPertinentQuestion
from chains_v2.retrieval_qa import retrieval_qa
from chains_v2.research_compiler import research_compiler
from chains_v2.question_atomizer import QuestionAtomizer
from chains_v2.refine_answer import RefineAnswer
## Import all the helpers.
from helpers.response_helpers import result2QuestionsList
from helpers.response_helpers import qStr2Dict
from helpers.questions_helper import getAnsweredQuestions
from helpers.questions_helper import getUnansweredQuestions
from helpers.questions_helper import getSubQuestions
from helpers.questions_helper import getHopQuestions
from helpers.questions_helper import getLastQuestionId
from helpers.questions_helper import markAnswered
from helpers.questions_helper import getQuestionById
import nest_asyncio # noqa: E402
nest_asyncio.apply()
load_dotenv()
load_dotenv(find_dotenv())
nltk.download('averaged_perceptron_tagger_eng')
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
GOOGLE_CSE_ID = os.environ["GOOGLE_CSE_ID"]
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
LLAMA_PARSE_API_KEY = os.environ["LLAMA_PARSE_API_KEY"]
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
LANGCHAIN_API_KEY = os.environ["LANGCHAIN_API_KEY"]
LANGCHAIN_ENDPOINT = os.environ["LANGCHAIN_ENDPOINT"]
LANGCHAIN_PROJECT = os.environ["LANGCHAIN_PROJECT"]
groq_api_key=os.getenv('GROQ_API_KEY')
st.set_page_config(layout="wide")
css = """
<style>
[data-testid="stAppViewContainer"] {
background-color: #f8f9fa; /* Very light grey */
}
[data-testid="stSidebar"] {
background-color: white;
color: black;
}
[data-testid="stAppViewContainer"] * {
color: black; /* Ensure all text is black */
}
button {
background-color: #add8e6; /* Light blue for primary buttons */
color: black;
border: 2px solid green; /* Green border */
}
button:hover {
background-color: #87ceeb; /* Slightly darker blue on hover */
}
button:active {
outline: 2px solid green; /* Green outline when the button is pressed */
outline-offset: 2px; /* Space between button and outline */
}
.stButton>button:first-child {
background-color: #add8e6; /* Light blue for primary buttons */
color: black;
}
.stButton>button:first-child:hover {
background-color: #87ceeb; /* Slightly darker blue on hover */
}
.stButton>button:nth-child(2) {
background-color: #b0e0e6; /* Even lighter blue for secondary buttons */
color: black;
}
.stButton>button:nth-child(2):hover {
background-color: #add8e6; /* Slightly darker blue on hover */
}
[data-testid="stFileUploadDropzone"] {
background-color: white; /* White background for file upload */
}
[data-testid="stFileUploadDropzone"] .stDropzone, [data-testid="stFileUploadDropzone"] .stDropzone input {
color: black; /* Ensure file upload text is black */
}
.stButton>button:active {
outline: 2px solid green; /* Green outline when the button is pressed */
outline-offset: 2px;
}
</style>
"""
def load_credentials(filepath):
with open(filepath, 'r') as file:
return json.load(file)
# Load credentials from 'credentials.json'
credentials = load_credentials('Assets/credentials.json')
# Initialize session state if not already done
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
st.session_state.username = ''
# Function to handle login
def login(username, password):
if username in credentials and credentials[username] == password:
st.session_state.logged_in = True
st.session_state.username = username
st.rerun() # Rerun to reflect login state
else:
st.session_state.logged_in = False
st.session_state.username = ''
st.error("Invalid username or password.")
# Function to handle logout
def logout():
st.session_state.logged_in = False
st.session_state.username = ''
st.rerun() # Rerun to reflect logout state
#--------------
## Define log printers
def print_iteration(current_iteration):
print(
chalk.bg_yellow_bright.black.bold(
f"\n Iteration - {current_iteration} β·βΆ \n"
)
)
def print_unanswered_questions(unanswered):
print(
chalk.cyan_bright("** Unanswered Questions **"),
chalk.cyan("".join([f"\n'{q['id']}. {q['question']}'" for q in unanswered])),
)
def print_next_question(current_question_id, current_question):
print(
chalk.magenta.bold("** π€ Next Questions I must ask: **\n"),
chalk.magenta(current_question_id),
chalk.magenta(current_question["question"]),
)
def print_answer(current_question):
print(
chalk.yellow_bright.bold("** Answer **\n"),
chalk.yellow_bright(current_question["answer"]),
)
def print_final_answer(answerpad):
print(
chalk.white("** Refined Answer **\n"),
chalk.white(answerpad[-1]),
)
def print_max_iterations():
print(
chalk.bg_yellow_bright.black.bold(
"\n ββ Max Iterations Reached. Compiling the results ...\n"
)
)
def print_result(result):
print(chalk.italic.white_bright((result["text"])))
def print_sub_question(q):
print(chalk.magenta.bold(f"** Sub Question **\n{q['question']}\n{q['answer']}\n"))
#--------------
## ---- The researcher ----- ##
class Agent:
## Create chains
def __init__(self, agent_settings, scratchpad, store, verbose):
self.store = store
self.scratchpad = scratchpad
self.agent_settings = agent_settings
self.verbose = verbose
self.question_creation_chain = QuestionCreationChain.from_llm(
language_model(
temperature=self.agent_settings["question_creation_temperature"]
),
verbose=self.verbose,
)
self.question_atomizer = QuestionAtomizer.from_llm(
llm=language_model(
temperature=self.agent_settings["question_atomizer_temperature"]
),
verbose=self.verbose,
)
self.most_pertinent_question = MostPertinentQuestion.from_llm(
language_model(
temperature=self.agent_settings["question_creation_temperature"]
),
verbose=self.verbose,
)
self.refine_answer = RefineAnswer.from_llm(
language_model(
temperature=self.agent_settings["refine_answer_temperature"]
),
verbose=self.verbose,
)
def run(self, question):
## Step 0. Prepare the initial set of questions
atomized_questions_response = self.question_atomizer.run(
question=question,
num_questions=self.agent_settings["num_atomistic_questions"],
)
self.scratchpad["questions"] += result2QuestionsList(
question_response=atomized_questions_response,
type="subquestion",
status="unanswered",
)
for q in self.scratchpad["questions"]:
q["answer"], q["documents"] = retrieval_qa(
llm=language_model(
temperature=self.agent_settings["qa_temperature"],
verbose=self.verbose,
),
retriever=self.store.as_retriever(
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
),
question=q["question"],
answer_length=self.agent_settings["intermediate_answers_length"],
verbose=self.verbose,
)
q["status"] = "answered"
print_sub_question(q)
current_context = "".join(
f"\n{q['id']}. {q['question']}\n{q['answer']}\n"
for q in self.scratchpad["questions"]
)
self.scratchpad["answerpad"] += [current_context]
current_iteration = 0
while True:
current_iteration += 1
print_iteration(current_iteration)
# STEP 1: create questions
start_id = getLastQuestionId(self.scratchpad["questions"]) + 1
questions_response = self.question_creation_chain.run(
question=question,
context=current_context,
previous_questions=[
"".join(f"\n{q['question']}") for q in self.scratchpad["questions"]
],
num_questions=self.agent_settings["num_questions_per_iteration"],
start_id=start_id,
)
self.scratchpad["questions"] += result2QuestionsList(
question_response=questions_response,
type="hop",
status="unanswered",
)
# STEP 2: Choose question for current iteration
unanswered = getUnansweredQuestions(self.scratchpad["questions"])
unanswered_questions_prompt = self.unanswered_questions_prompt(unanswered)
print_unanswered_questions(unanswered)
response = self.most_pertinent_question.run(
original_question=question,
unanswered_questions=unanswered_questions_prompt,
)
current_question_dict = qStr2Dict(question=response)
current_question_id = current_question_dict["id"]
current_question = getQuestionById(
self.scratchpad["questions"], current_question_id
)
print_next_question(current_question_id, current_question)
# STEP 3: Answer the question
current_question["answer"], current_question["documents"] = retrieval_qa(
llm=language_model(
temperature=self.agent_settings["qa_temperature"],
verbose=self.verbose,
),
retriever=self.store.as_retriever(
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
),
question=current_question["question"],
answer_length=self.agent_settings["intermediate_answers_length"],
verbose=self.verbose,
)
markAnswered(self.scratchpad["questions"], current_question_id)
print_answer(current_question)
current_context = current_question["answer"]
## STEP 4: refine the answer
refinement_context = current_question["question"] + "\n" + current_context
refine_answer = self.refine_answer.run(
question=question,
context=refinement_context,
answer=self.get_latest_answer(),
)
self.scratchpad["answerpad"] += [refine_answer]
print_final_answer(self.scratchpad["answerpad"])
if current_iteration > self.agent_settings["max_iterations"]:
print_max_iterations()
break
def unanswered_questions_prompt(self, unanswered):
return (
"[" + "".join([f"\n{q['id']}. {q['question']}" for q in unanswered]) + "]"
)
def notes_prompt(self, answered_questions):
return "".join(
[
f"{{ Question: {q['question']}, Answer: {q['answer']} }}"
for q in answered_questions
]
)
def get_latest_answer(self):
answers = self.scratchpad["answerpad"]
answer = answers[-1] if answers else ""
return answer
#--------------
# If not logged in, show login form
if not st.session_state.logged_in:
st.sidebar.write("Login")
username = st.sidebar.text_input('Username')
password = st.sidebar.text_input('Password', type='password')
if st.sidebar.button('Login'):
login(username, password)
# Stop the script here if the user is not logged in
st.stop()
# If logged in, show logout button and main content
st.sidebar.image('StratXcel.png', width=150)
if st.session_state.logged_in:
st.sidebar.write(f"Welcome, {st.session_state.username}!")
if st.sidebar.button('Logout'):
logout()
st.write(css, unsafe_allow_html=True)
company_document = st.sidebar.toggle("Company document", False)
financial_document = st.sidebar.toggle("Financial document", False)
intercreditor_document = st.sidebar.toggle("Intercreditor document", False)
#-------------
llm=ChatGroq(groq_api_key=groq_api_key,
model_name="Llama-3.1-70b-Versatile", temperature = 0.0, streaming=True)
Llama = "Llama-3.1-70b-Versatile"
def language_model(
model_name: str = Llama, temperature: float = 0, verbose: bool = False
):
llm=ChatGroq(groq_api_key=groq_api_key, model_name=model_name, temperature=temperature, verbose=verbose)
return llm
#--------------
doc_retriever_company = None
doc_retriever_financials = None
doc_retriever_intercreditor = None
#--------------
#@st.cache_data
def load_or_parse_data_company():
data_file = "./data/parsed_data_company.pkl"
parsingInstructionUber10k = """The provided documents are company law documents of a company.
They contain detailed information about the rights and obligations of the company and its shareholders and contracting parties.
They also contain procedures for dispute resolution, voting, control priority and exit and sale situations.
You must never provide false legal or financial information. Use only the information included in the context documents.
Only refer to other sources if the context document refers to them or if necessary to provide additional understanding to company's own contracts."""
parser = LlamaParse(api_key=LLAMA_PARSE_API_KEY,
result_type="markdown",
parsing_instruction=parsingInstructionUber10k,
max_timeout=5000,
gpt4o_mode=True,
)
file_extractor = {".pdf": parser}
reader = SimpleDirectoryReader("./Corporate_Documents", file_extractor=file_extractor)
documents = reader.load_data()
print("Saving the parse results in .pkl format ..........")
joblib.dump(documents, data_file)
# Set the parsed data to the variable
parsed_data_company = documents
return parsed_data_company
#@st.cache_data
def load_or_parse_data_financial():
data_file = "./data/parsed_data_financial.pkl"
parsingInstructionUber10k = """The provided documents are financial law documents of a company.
They contain detailed information about the rights and obligations of the company and its creditors.
They also contain procedures for acceleration of debt, sale of security, enforcement, use of creditor control, priority and distribution of assets.
You must never provide false legal or financial information. Use only the information included in the context documents.
Only refer to other sources if the context document refers to them or if necessary to provide additional understanding to company's own contracts."""
parser = LlamaParse(api_key=LLAMA_PARSE_API_KEY,
result_type="markdown",
parsing_instruction=parsingInstructionUber10k,
max_timeout=5000,
gpt4o_mode=True,
)
file_extractor = {".pdf": parser}
reader = SimpleDirectoryReader("./Financial_Documents", file_extractor=file_extractor)
documents = reader.load_data()
print("Saving the parse results in .pkl format ..........")
joblib.dump(documents, data_file)
# Set the parsed data to the variable
parsed_data_financial = documents
return parsed_data_financial
#--------------
#@st.cache_data
def load_or_parse_data_intercreditor():
data_file = "./data/parsed_data_intercreditor.pkl"
parsingInstructionUber10k = """The provided documents are intercreditor agreements a company .
They contain detailed information about the rights and obligations of the company and its creditors and creditor groups.
They also contain procedures for acceleration of debt, sale of security, enforcement, use of creditor control, priority and distribution of assets.
You must never provide false legal or financial information. Use only the information included in the context documents.
Only refer to other sources if the context document refers to them or if necessary to provide additional understanding to company's own contracts."""
parser = LlamaParse(api_key=LLAMA_PARSE_API_KEY,
result_type="markdown",
parsing_instruction=parsingInstructionUber10k,
max_timeout=5000,
gpt4o_mode=True,
)
file_extractor = {".pdf": parser}
reader = SimpleDirectoryReader("./Intercreditor_Documents", file_extractor=file_extractor)
documents = reader.load_data()
print("Saving the parse results in .pkl format ..........")
joblib.dump(documents, data_file)
# Set the parsed data to the variable
parsed_data_financial = documents
return parsed_data_financial
#--------------
# Create vector database
@st.cache_resource
def create_vector_database_company():
# Call the function to either load or parse the data
llama_parse_documents = load_or_parse_data_company()
with open('data/output_company.md', 'a') as f: # Open the file in append mode ('a')
for doc in llama_parse_documents:
f.write(doc.text + '\n')
markdown_path = "data/output_company.md"
loader = UnstructuredMarkdownLoader(markdown_path)
documents = loader.load()
# Split loaded documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=30)
docs = text_splitter.split_documents(documents)
#len(docs)
print(f"length of documents loaded: {len(documents)}")
print(f"total number of document chunks generated :{len(docs)}")
embed_model = HuggingFaceEmbeddings()
print('Vector DB not yet created !')
vs = Chroma.from_documents(
documents=docs,
embedding=embed_model,
collection_name="rag",
)
doc_retriever_company = vs
#doc_retriever_company = vs.as_retriever()
print('Vector DB created successfully !')
return doc_retriever_company
@st.cache_resource
def create_vector_database_financial():
# Call the function to either load or parse the data
llama_parse_documents = load_or_parse_data_financial()
with open('data/output_financials.md', 'a') as f: # Open the file in append mode ('a')
for doc in llama_parse_documents:
f.write(doc.text + '\n')
markdown_path = "data/output_financials.md"
loader = UnstructuredMarkdownLoader(markdown_path)
documents = loader.load()
# Split loaded documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15)
docs = text_splitter.split_documents(documents)
print(f"length of documents loaded: {len(documents)}")
print(f"total number of document chunks generated :{len(docs)}")
embed_model = HuggingFaceEmbeddings()
vs = Chroma.from_documents(
documents=docs,
embedding=embed_model,
collection_name="rag"
)
doc_retriever_financial = vs
#doc_retriever_financial = vs.as_retriever()
print('Vector DB created successfully !')
return doc_retriever_financial
#--------------
@st.cache_resource
def create_vector_database_intercreditor():
# Call the function to either load or parse the data
llama_parse_documents = load_or_parse_data_intercreditor()
with open('data/output_intercreditor.md', 'a') as f: # Open the file in append mode ('a')
for doc in llama_parse_documents:
f.write(doc.text + '\n')
markdown_path = "data/output_intercreditor.md"
loader = UnstructuredMarkdownLoader(markdown_path)
documents = loader.load()
# Split loaded documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15)
docs = text_splitter.split_documents(documents)
print(f"length of documents loaded: {len(documents)}")
print(f"total number of document chunks generated :{len(docs)}")
embed_model = HuggingFaceEmbeddings()
vs = Chroma.from_documents(
documents=docs,
embedding=embed_model,
collection_name="rag"
)
doc_retriever_intercreditor = vs
#doc_retriever_intercreditor = vs.as_retriever()
print('Vector DB created successfully !')
return doc_retriever_intercreditor
#--------------
legal_analysis_button_key = "legal_strategy_button"
#---------------
def delete_files_and_folders(folder_path):
for root, dirs, files in os.walk(folder_path, topdown=False):
for file in files:
try:
os.unlink(os.path.join(root, file))
except Exception as e:
st.error(f"Error deleting {os.path.join(root, file)}: {e}")
for dir in dirs:
try:
os.rmdir(os.path.join(root, dir))
except Exception as e:
st.error(f"Error deleting directory {os.path.join(root, dir)}: {e}")
#---------------
if company_document:
uploaded_files_ESG = st.sidebar.file_uploader("Choose company law documents", accept_multiple_files=True, key="company_files")
for uploaded_file in uploaded_files_ESG:
st.write("filename:", uploaded_file.name)
def save_uploadedfile(uploadedfile):
with open(os.path.join("Corporate_Documents",uploadedfile.name),"wb") as f:
f.write(uploadedfile.getbuffer())
return st.success("Saved File:{} to Company_Documents".format(uploadedfile.name))
save_uploadedfile(uploaded_file)
if financial_document:
uploaded_files_financials = st.sidebar.file_uploader("Choose financial law documents", accept_multiple_files=True, key="financial_files")
for uploaded_file in uploaded_files_financials:
st.write("filename:", uploaded_file.name)
def save_uploadedfile(uploadedfile):
with open(os.path.join("Financial_Documents",uploadedfile.name),"wb") as f:
f.write(uploadedfile.getbuffer())
return st.success("Saved File:{} to Financial_Documents".format(uploadedfile.name))
save_uploadedfile(uploaded_file)
if intercreditor_document:
uploaded_files_intercreditor = st.sidebar.file_uploader("Choose intercreditor documents", accept_multiple_files=True, key="intercreditor_files")
for uploaded_file in uploaded_files_intercreditor:
st.write("filename:", uploaded_file.name)
def save_uploadedfile(uploadedfile):
with open(os.path.join("Intercreditor_Documents",uploadedfile.name),"wb") as f:
f.write(uploadedfile.getbuffer())
return st.success("Saved File:{} to Intercreditor_Documents".format(uploadedfile.name))
save_uploadedfile(uploaded_file)
#---------------
def company_strategy():
doc_retriever_company = create_vector_database_company().as_retriever()
prompt_template = """<|system|>
You are a seasoned attorney specilizing in company and corporate law and legal analysis. You write expert analyses for institutional investors.
Output must have sub-headings in bold font and be fluent.<|end|>
<|user|>
Answer the {question} based on the information you find in context: {context} <|end|>
<|assistant|>"""
prompt = PromptTemplate(template=prompt_template, input_variables=["question", "context"])
qa = (
{
"context": doc_retriever_company,
"question": RunnablePassthrough(),
}
| prompt
| llm
| StrOutputParser()
)
Corporate_answer_1 = qa.invoke("What provisions govern the appointment and removal of directors in the company? Outline the procedures and any required shareholder involvement in these processes.")
Corporate_answer_2 = qa.invoke("Explain the company's share capital structure, including any provisions for different classes of shares and the rights attached to them. How are voting rights distributed among shareholders?")
Corporate_answer_3 = qa.invoke("What restrictions or conditions are placed on the transfer or sale of shares in the company's articles of association or shareholders' agreements? Include any pre-emption rights or lock-in provisions.")
Corporate_answer_4 = qa.invoke("Describe the rights and obligations of majority and minority shareholders as outlined in the company's shareholders' agreements. What protections are in place for minority shareholders?")
Corporate_answer_5 = qa.invoke("What are the provisions for issuing new shares or increasing the company's capital? Detail any existing shareholder approval requirements or pre-emptive rights outlined in the company's governing documents.")
Corporate_answer_6 = qa.invoke("Outline the procedures for decision-making in shareholder meetings, including quorum requirements and voting thresholds for ordinary and special resolutions. How are dissenting shareholders addressed in key decisions?")
Corporate_answer_7 = qa.invoke("What mechanisms are in place for resolving shareholder disputes? Provide details on any arbitration or mediation clauses found in the company's articles or shareholders' agreements.")
Corporate_answer_8 = qa.invoke("Describe the exit mechanisms available for shareholders, such as drag-along and tag-along rights, and the circumstances under which they can be triggered.")
Corporate_answer_9 = qa.invoke("What rights do shareholders have to appoint or remove members of the board? Outline any requirements for shareholder approval in relation to board appointments or dismissals.")
Corporate_answer_10 = qa.invoke("Explain any restrictions on the powers of the board as set out in the company's governing documents. Are there specific decisions that require shareholder approval or consultation?")
Corporate_answer_11 = qa.invoke("What provisions are in place regarding dividends and the distribution of profits? How are dividend rights structured among different classes of shares, if applicable?")
corporate_output = f"""**__Director Appointment and Removal:__** {Corporate_answer_1} \n\n
**__Share Capital Structure and Voting Rights:__** {Corporate_answer_2} \n\n
**__Restrictions on Share Transfer and Sale:__** {Corporate_answer_3} \n\n
**__Rights and Obligations of Shareholders:__** {Corporate_answer_4} \n\n
**__Issuing New Shares and Capital Increases:__** {Corporate_answer_5} \n\n
**__Decision-Making in Shareholder Meetings:__** {Corporate_answer_6} \n\n
**__Shareholder Dispute Resolution Mechanisms:__** {Corporate_answer_7} \n\n
**__Exit Mechanisms for Shareholders:__** {Corporate_answer_8} \n\n
**__Rights to Appoint or Remove Board Members:__** {Corporate_answer_9} \n\n
**__Restrictions on the Board's Powers:__** {Corporate_answer_10} \n\n
**__Dividend and Profit Distribution Provisions:__** {Corporate_answer_11}"""
financial_output = corporate_output
with open("company_analysis.txt", 'w') as file:
file.write(financial_output)
return financial_output
def financial_strategy():
doc_retriever_financial = create_vector_database_financial().as_retriever()
prompt_template = """<|system|>
You are a seasoned attorney specializing in financial law and legal analysis. You write expert analyses for institutional investors.
Output must have fluent sub-headings in bold font.<|end|>
<|user|>
Answer the {question} based on the information you find in context: {context} <|end|>
<|assistant|>"""
prompt = PromptTemplate(template=prompt_template, input_variables=["question", "context"])
qa = (
{
"context": doc_retriever_financial,
"question": RunnablePassthrough(),
}
| prompt
| llm
| StrOutputParser()
)
Financial_answer_1 = qa.invoke("What are the parties of the agreements and key obligations of the borrower under the company's loan agreements? Describe any covenants or financial ratios the borrower must comply with.")
Financial_answer_3 = qa.invoke("What provisions govern the occurrence of events of default under the company's loan and bond agreements? Include any cross-default or material adverse change clauses.")
Financial_answer_4 = qa.invoke("Describe the rights of secured creditors under the company's security documents. What types of assets are secured, and how can creditors enforce their security in case of default?")
Financial_answer_5 = qa.invoke("What are the acceleration clauses in the company's financial agreements? Under what conditions can creditors demand early repayment or terminate financing arrangements?")
Financial_answer_6 = qa.invoke("Outline the procedures and requirements for enforcing security interests under the company's security documents. How do the rights of secured and unsecured creditors differ in this context?")
Financial_answer_7 = qa.invoke("How are decisions related to enforcement or restructuring prioritized among creditors?")
Financial_answer_8 = qa.invoke("Explain the company's obligations under any guarantees or indemnities provided to creditors. What are the limitations, if any, on the enforcement of these guarantees?")
Financial_answer_9 = qa.invoke("Describe the rights of bondholders or lenders in the company's bond issuance agreements or loans. What are the procedures for creditor meetings, and how can creditors exercise their rights in the event of default?")
Financial_answer_10 = qa.invoke("What protections are in place for junior creditors or subordinated debt holders in the company's financial agreements? How are their rights affected in the event of enforcement or restructuring?")
Financial_answer_11 = qa.invoke("What are the company's obligations to provide financial information to creditors under its loan or bond agreements? How frequently must the company report, and what information is typically required?")
financial_output = f"""**__Borrower Obligations and Covenants:__** {Financial_answer_1} \n\n
**__Events of Default and Cross-Default Provisions:__** {Financial_answer_3} \n\n
**__Rights of Secured Creditors and Enforcement of Security:__** {Financial_answer_4} \n\n
**__Acceleration Clauses and Early Repayment Triggers:__** {Financial_answer_5} \n\n
**__Enforcement of Security Interests:__** {Financial_answer_6} \n\n
**__Intercreditor Decision-Making and Control:__** {Financial_answer_7} \n\n
**__Guarantees and Indemnities Obligations:__** {Financial_answer_8} \n\n
**__Rights of Bondholders and Default Procedures:__** {Financial_answer_9} \n\n
**__Protections for Junior Creditors:__** {Financial_answer_10} \n\n
**__Financial Reporting Obligations to Creditors:__** {Financial_answer_11}"""
with open("financial_analysis.txt", 'w') as file:
file.write(financial_output)
return financial_output
def intercreditor_strategy():
doc_retriever_intercreditor = create_vector_database_intercreditor().as_retriever()
prompt_template = """<|system|>
You are a seasoned attorney specilizing in financial law and legal analysis. You write expert analyses for institutional investors.
Output must have sub-headings in bold font and be fluent.<|end|>
<|user|>
Answer the {question} based on the information you find in context: {context} <|end|>
<|assistant|>"""
prompt = PromptTemplate(template=prompt_template, input_variables=["question", "context"])
qa = (
{
"context": doc_retriever_intercreditor,
"question": RunnablePassthrough(),
}
| prompt
| llm
| StrOutputParser()
)
Intercreditor_answer_1 = qa.invoke("What are the parties involved in the intercreditor agreements, and what are their key roles and obligations?")
Intercreditor_answer_2 = qa.invoke("What provisions govern the ranking and priority of claims among creditors under the intercreditor agreements? Describe any subordination terms or waterfall clauses.")
Intercreditor_answer_3 = qa.invoke("How are enforcement actions handled under the intercreditor agreements? Are there specific procedures for appointing an enforcement agent or for coordinating enforcement between creditors?")
Intercreditor_answer_4 = qa.invoke("What are the standstill and turnover provisions in the intercreditor agreements? Under what circumstances can a creditor be prevented from taking enforcement actions?")
Intercreditor_answer_5 = qa.invoke("How are payment blockages or restrictions handled between senior and junior creditors? What are the limitations or conditions imposed on junior creditors under these provisions?")
Intercreditor_answer_6 = qa.invoke("What are the mechanisms for resolving disputes or conflicts between creditors in the intercreditor agreements?")
Intercreditor_answer_7 = qa.invoke("How do the intercreditor agreements handle the distribution of proceeds in the event of enforcement or restructuring? What are the priority rules for distributing recoveries among creditors?")
Intercreditor_answer_8 = qa.invoke("Describe the provisions related to amendments and waivers in the intercreditor agreements. How are decisions to amend the agreement or waive certain rights made among creditors?")
Intercreditor_answer_9 = qa.invoke("What restrictions or limitations exist in the intercreditor agreements concerning the ability of junior creditors to exercise rights in insolvency or restructuring proceedings?")
Intercreditor_answer_10 = qa.invoke("What reporting or information-sharing obligations exist under the intercreditor agreements? How frequently must creditors be updated, and what type of information is shared between creditor groups?")
intercreditor_output = f"""**__Parties and Obligations under Intercreditor Agreements:__** {Intercreditor_answer_1} \n\n
**__Ranking and Priority of Claims:__** {Intercreditor_answer_2} \n\n
**__Enforcement Actions and Coordination:__** {Intercreditor_answer_3} \n\n
**__Standstill and Turnover Provisions:__** {Intercreditor_answer_4} \n\n
**__Payment Blockages and Restrictions:__** {Intercreditor_answer_5} \n\n
**__Dispute Resolution Mechanisms:__** {Intercreditor_answer_6} \n\n
**__Distribution of Proceeds and Priority Rules:__** {Intercreditor_answer_7} \n\n
**__Amendments and Waivers:__** {Intercreditor_answer_8} \n\n
**__Restrictions on Junior Creditors in Insolvency:__** {Intercreditor_answer_9} \n\n
**__Information-Sharing Obligations:__** {Intercreditor_answer_10}"""
with open("intercreditor_analysis.txt", 'w') as file:
file.write(intercreditor_output)
return intercreditor_output
#-------------
@st.cache_data
def generate_strategy() -> str:
combined_output = ""
# Check if there are files in the Corporate_Documents folder
if company_document and os.path.exists("Corporate_Documents") and os.listdir("Corporate_Documents"):
company_output = company_strategy()
combined_output += company_output + '\n\n'
# Check if there are files in the Financial_Documents folder
if financial_document and os.path.exists("Financial_Documents") and os.listdir("Financial_Documents"):
financial_output = financial_strategy()
combined_output += financial_output + '\n\n'
# Check if there are files in the Intercreditor_Documents folder
if intercreditor_document and os.path.exists("Intercreditor_Documents") and os.listdir("Intercreditor_Documents"):
intercreditor_output = intercreditor_strategy()
combined_output += intercreditor_output + '\n\n'
# Set the combined result in a single session state key
st.session_state.results["legal_analysis_button_key"] = combined_output
return combined_output
#---------------
#@st.cache_data
def create_pdf():
company_content = ""
financial_content = ""
intercreditor_content = ""
# Check if 'company_analysis.txt' exists and open if it does
if os.path.exists('company_analysis.txt'):
with open('company_analysis.txt', 'r') as file1:
company_content = file1.read()
# Check if 'financial_analysis.txt' exists and open if it does
if os.path.exists('financial_analysis.txt'):
with open('financial_analysis.txt', 'r') as file2:
financial_content = file2.read()
# Check if 'intercreditor_analysis.txt' exists and open if it does
if os.path.exists('intercreditor_analysis.txt'):
with open('intercreditor_analysis.txt', 'r') as file3:
intercreditor_content = file3.read()
# Combine the contents of the available files
combined_content = ""
if company_content:
combined_content += company_content + '\n\n'
if financial_content:
combined_content += financial_content + '\n\n'
if intercreditor_content:
combined_content += intercreditor_content + '\n\n'
# Write the combined content to a new file only if any content exists
if combined_content:
with open('legal_analysis.txt', 'w') as outfile:
outfile.write(combined_content.strip())
text_file = "legal_analysis.txt"
pdf = FPDF('P', 'mm', 'A4')
pdf.add_page()
pdf.set_margins(10, 10, 10)
pdf.set_font("Arial", size=15)
pdf.cell(0, 10, txt="Structured Legal Analysis", ln=2, align='C')
pdf.ln(5)
pdf.set_font("Arial", size=11)
try:
with open(text_file, 'r', encoding='utf-8') as f:
for line in f:
pdf.multi_cell(0, 6, txt=line.encode('latin-1', 'replace').decode('latin-1'), align='L')
pdf.ln(5)
except UnicodeEncodeError:
print("UnicodeEncodeError: Some characters could not be encoded in Latin-1. Skipping...")
pass # Skip the lines causing UnicodeEncodeError
output_pdf_path = "ESG_analysis.pdf"
pdf.output(output_pdf_path)
#----------------
#llm = build_llm()
if 'results' not in st.session_state:
st.session_state.results = {
"legal_analysis_button_key": {}
}
loaders = {'.pdf': PyMuPDFLoader,
'.xml': UnstructuredXMLLoader,
'.csv': CSVLoader,
}
def create_directory_loader(file_type, directory_path):
return DirectoryLoader(
path=directory_path,
glob=f"**/*{file_type}",
loader_cls=loaders[file_type],
)
strategies_container = st.container()
with strategies_container:
mrow1_col1, mrow1_col2 = st.columns(2)
st.sidebar.info("To get started, please upload the documents from the company you would like to analyze.")
button_container = st.sidebar.container()
if os.path.exists("company_analysis.txt") and os.path.exists("financial_analysis.txt"):
create_pdf()
with open("ESG_analysis.pdf", "rb") as pdf_file:
PDFbyte = pdf_file.read()
st.sidebar.download_button(label="Download Analyses",
data=PDFbyte,
file_name="strategy_sheet.pdf",
mime='application/octet-stream',
)
if button_container.button("Clear All"):
st.session_state.button_states = {
"legal_analysis_button_key": False,
}
st.session_state.button_states = {
"financial_analysis_button_key": False,
}
st.session_state.results = {}
st.session_state['history'] = []
st.session_state['generated'] = ["Let's discuss the company documents π€"]
st.session_state['past'] = ["Hey ! π"]
st.cache_data.clear()
st.cache_resource.clear()
# Check if the subfolder exists
if os.path.exists("Corporate_Documents"):
for filename in os.listdir("Corporate_Documents"):
file_path = os.path.join("Corporate_Documents", filename)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
st.error(f"Error deleting {file_path}: {e}")
else:
pass
if os.path.exists("Financial_Documents"):
# Iterate through files in the subfolder and delete them
for filename in os.listdir("Financial_Documents"):
file_path = os.path.join("Financial_Documents", filename)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
st.error(f"Error deleting {file_path}: {e}")
else:
pass
# st.warning("No 'data' subfolder found.")
if os.path.exists("Intercreditor_Documents"):
# Iterate through files in the subfolder and delete them
for filename in os.listdir("Intercreditor_Documents"):
file_path = os.path.join("Intercreditor_Documents", filename)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
st.error(f"Error deleting {file_path}: {e}")
else:
pass
# st.warning("No 'data' subfolder found.")
folders_to_clean = ["data", "chroma_db_portfolio", "chroma_db_LT", "chroma_db_fin"]
for folder_path in folders_to_clean:
if os.path.exists(folder_path):
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
try:
if os.path.isfile(item_path) or os.path.islink(item_path):
os.unlink(item_path) # Remove files or symbolic links
elif os.path.isdir(item_path):
shutil.rmtree(item_path) # Remove subfolders and all their contents
except Exception as e:
st.error(f"Error deleting {item_path}: {e}")
else:
pass
# st.warning(f"No '{folder_path}' folder found.")
with mrow1_col1:
st.subheader("Legal Document Analysis")
st.info("This tool is designed to provide a legal analysis of the documentation for institutional investors.")
button_container2 = st.container()
if "button_states" not in st.session_state:
st.session_state.button_states = {
"legal_analysis_button_key": False,
}
if "results" not in st.session_state:
st.session_state.results = {}
if button_container2.button("Legal Analysis", key=legal_analysis_button_key):
st.session_state.button_states[legal_analysis_button_key] = True
result_generator = generate_strategy() # Call the generator function
st.session_state.results["legal_analysis_output"] = result_generator
if "legal_analysis_output" in st.session_state.results:
st.write(st.session_state.results["legal_analysis_output"])
st.divider()
with mrow1_col2:
if "legal_analysis_button_key" in st.session_state.results and st.session_state.results["legal_analysis_button_key"]:
run_id = str(uuid.uuid4())
scratchpad = {
"questions": [], # list of type Question
"answerpad": [],
}
if company_document:
store = create_vector_database_company()
elif financial_document:
store = create_vector_database_financial()
elif intercreditor_document:
store = create_vector_database_intercreditor()
else:
pass
agent_settings = {
"max_iterations": 3,
"num_atomistic_questions": 2,
"num_questions_per_iteration": 4,
"question_atomizer_temperature": 0,
"question_creation_temperature": 0.4,
"question_prioritisation_temperature": 0,
"refine_answer_temperature": 0,
"qa_temperature": 0,
"analyser_temperature": 0,
"intermediate_answers_length": 200,
"answer_length": 500,
}
# Updated prompt templates to include chat history
def format_chat_history(chat_history):
"""Format chat history as a single string for input to the chain."""
formatted_history = "\n".join([f"User: {entry['input']}\nAI: {entry['output']}" for entry in chat_history])
return formatted_history
# Initialize the agent with LCEL tools and memory
memory = ConversationBufferMemory(memory_key="chat_history", k=3, return_messages=True)
agent = Agent(agent_settings, scratchpad, store, True)
def conversational_chat(query):
# Get the result from the agent
agent.run({"input": query, "chat_history": st.session_state['history']})
result = agent.get_latest_answer()
# Handle different response types
if isinstance(result, dict):
# Extract the main content if the result is a dictionary
result = result.get("output", "") # Adjust the key as needed based on your agent's output
elif isinstance(result, list):
# If the result is a list, join it into a single string
result = "\n".join(result)
elif not isinstance(result, str):
# Convert the result to a string if it is not already one
result = str(result)
# Add the query and the result to the session state
st.session_state['history'].append((query, result))
# Update memory with the conversation
memory.save_context({"input": query}, {"output": result})
# Return the result
return result
# Ensure session states are initialized
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Let's discuss the legal and financial matters π€"]
if 'past' not in st.session_state:
st.session_state['past'] = ["Hey ! π"]
if 'input' not in st.session_state:
st.session_state['input'] = ""
# Streamlit layout
st.subheader("Discuss the documentation")
st.info("This tool is designed to enable discussion about the company's corporate and financial documentation.")
response_container = st.container()
container = st.container()
with container:
with st.form(key='my_form'):
user_input = st.text_input("Query:", placeholder="What would you like to know about the documentation", key='input')
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
output = conversational_chat(user_input)
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
user_input = "Query:"
#st.session_state['input'] = ""
# Display generated responses
if st.session_state['generated']:
with response_container:
for i in range(len(st.session_state['generated'])):
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="shapes")
message(st.session_state["generated"][i], key=str(i), avatar_style="icons")
|