Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,16 @@
|
|
| 1 |
-
#
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import torch
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
"fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym",
|
| 10 |
-
"MisterAI/jpacifico_Chocolatine-3B-Instruct-DPO-v1.2",
|
| 11 |
-
# Ajoutez d'autres modèles ici
|
| 12 |
-
]
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
import gradio as gr
|
| 17 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 18 |
|
| 19 |
-
def load_model(
|
| 20 |
"""Charge le modèle et le tokenizer"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
return model, tokenizer
|
| 25 |
|
| 26 |
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
| 27 |
"""Génère du texte en utilisant le modèle"""
|
|
@@ -29,25 +18,17 @@ def generate_text(model, tokenizer, input_text, max_length, temperature):
|
|
| 29 |
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
| 30 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 31 |
|
| 32 |
-
def main(
|
| 33 |
"""Fonction principale pour générer le texte"""
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
return generated_text
|
| 38 |
-
else:
|
| 39 |
-
return "Veuillez sélectionner un modèle"
|
| 40 |
|
| 41 |
demo = gr.Blocks()
|
| 42 |
|
| 43 |
with demo:
|
| 44 |
gr.Markdown("# Modèle de Langage")
|
| 45 |
|
| 46 |
-
with gr.Row():
|
| 47 |
-
model_select = gr.Dropdown(model_list, label="Sélectionner un modèle")
|
| 48 |
-
with gr.Row():
|
| 49 |
-
load_button = gr.Button("Charger le modèle")
|
| 50 |
-
|
| 51 |
with gr.Row():
|
| 52 |
input_text = gr.Textbox(label="Texte d'entrée")
|
| 53 |
with gr.Row():
|
|
@@ -57,18 +38,10 @@ with demo:
|
|
| 57 |
submit_button = gr.Button("Soumettre")
|
| 58 |
|
| 59 |
output_text = gr.Textbox(label="Texte généré")
|
| 60 |
-
history = gr.JSON(label="Historique")
|
| 61 |
-
|
| 62 |
-
load_button.click(
|
| 63 |
-
load_model,
|
| 64 |
-
inputs=model_name,
|
| 65 |
-
outputs=None,
|
| 66 |
-
queue=False
|
| 67 |
-
)
|
| 68 |
|
| 69 |
submit_button.click(
|
| 70 |
main,
|
| 71 |
-
inputs=[
|
| 72 |
outputs=output_text,
|
| 73 |
queue=False
|
| 74 |
)
|
|
|
|
| 1 |
+
#V03
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# Modèle à utiliser
|
| 7 |
+
model_name = "fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
def load_model():
|
| 10 |
"""Charge le modèle et le tokenizer"""
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 13 |
+
return model, tokenizer
|
|
|
|
| 14 |
|
| 15 |
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
| 16 |
"""Génère du texte en utilisant le modèle"""
|
|
|
|
| 18 |
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
| 19 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 20 |
|
| 21 |
+
def main(input_text, max_length, temperature):
|
| 22 |
"""Fonction principale pour générer le texte"""
|
| 23 |
+
model, tokenizer = load_model()
|
| 24 |
+
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
| 25 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
demo = gr.Blocks()
|
| 28 |
|
| 29 |
with demo:
|
| 30 |
gr.Markdown("# Modèle de Langage")
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
with gr.Row():
|
| 33 |
input_text = gr.Textbox(label="Texte d'entrée")
|
| 34 |
with gr.Row():
|
|
|
|
| 38 |
submit_button = gr.Button("Soumettre")
|
| 39 |
|
| 40 |
output_text = gr.Textbox(label="Texte généré")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
submit_button.click(
|
| 43 |
main,
|
| 44 |
+
inputs=[input_text, max_length_slider, temperature_slider],
|
| 45 |
outputs=output_text,
|
| 46 |
queue=False
|
| 47 |
)
|