Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from sklearn.utils import resample
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# Step 1: Load the dataset from Hugging Face (Customer Support dataset)
|
| 9 |
+
dataset = load_dataset("bitext/Bitext-customer-support-llm-chatbot-training-dataset")
|
| 10 |
+
|
| 11 |
+
# Step 2: Sample a subset (20% of the dataset for testing)
|
| 12 |
+
sampled_data = dataset["train"].shuffle(seed=42).select([i for i in range(int(len(dataset["train"]) * 0.2))])
|
| 13 |
+
|
| 14 |
+
# Convert to DataFrame and display some rows
|
| 15 |
+
sampled_data_df = pd.DataFrame(sampled_data)
|
| 16 |
+
df_limited = sampled_data_df[['instruction', 'response']]
|
| 17 |
+
|
| 18 |
+
# Step 3: Handle class imbalance using oversampling
|
| 19 |
+
df_majority = df_limited[df_limited['response'] == df_limited['response'].mode()[0]]
|
| 20 |
+
df_minority = df_limited[df_limited['response'] != df_limited['response'].mode()[0]]
|
| 21 |
+
df_minority_upsampled = resample(df_minority, replace=True, n_samples=len(df_majority), random_state=42)
|
| 22 |
+
df_balanced = pd.concat([df_majority, df_minority_upsampled])
|
| 23 |
+
|
| 24 |
+
# Step 4: Load the pre-trained DialoGPT model and tokenizer
|
| 25 |
+
model_name = "microsoft/DialoGPT-medium"
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
+
|
| 29 |
+
# Check if pad_token is None, and set it to eos_token if it is
|
| 30 |
+
if tokenizer.pad_token is None:
|
| 31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 32 |
+
|
| 33 |
+
# Step 5: Preprocess the data for training
|
| 34 |
+
def preprocess_data_for_training(df, max_length=512):
|
| 35 |
+
inputs = tokenizer(df['instruction'].tolist(), padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
| 36 |
+
targets = tokenizer(df['response'].tolist(), padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
| 37 |
+
input_ids = inputs['input_ids']
|
| 38 |
+
target_ids = targets['input_ids']
|
| 39 |
+
if input_ids.shape[1] != target_ids.shape[1]:
|
| 40 |
+
target_ids = target_ids[:, :input_ids.shape[1]]
|
| 41 |
+
target_ids = target_ids.roll(1, dims=1)
|
| 42 |
+
target_ids[:, 0] = tokenizer.pad_token_id
|
| 43 |
+
return {'input_ids': input_ids, 'attention_mask': inputs['attention_mask'], 'labels': target_ids}
|
| 44 |
+
|
| 45 |
+
preprocessed_data = preprocess_data_for_training(df_balanced)
|
| 46 |
+
|
| 47 |
+
# Step 6: Create a custom dataset class for fine-tuning
|
| 48 |
+
class ChatbotDataset(Dataset):
|
| 49 |
+
def __init__(self, inputs, targets):
|
| 50 |
+
self.inputs = inputs
|
| 51 |
+
self.targets = targets
|
| 52 |
+
|
| 53 |
+
def __len__(self):
|
| 54 |
+
return len(self.inputs['input_ids'])
|
| 55 |
+
|
| 56 |
+
def __getitem__(self, idx):
|
| 57 |
+
return {
|
| 58 |
+
'input_ids': self.inputs['input_ids'][idx],
|
| 59 |
+
'attention_mask': self.inputs['attention_mask'][idx],
|
| 60 |
+
'labels': self.targets['input_ids'][idx]
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
train_dataset = ChatbotDataset(preprocessed_data, preprocessed_data)
|
| 64 |
+
|
| 65 |
+
# Step 7: Set up training arguments
|
| 66 |
+
training_args = TrainingArguments(
|
| 67 |
+
output_dir='./results',
|
| 68 |
+
num_train_epochs=3,
|
| 69 |
+
per_device_train_batch_size=4,
|
| 70 |
+
save_steps=10_000,
|
| 71 |
+
save_total_limit=2,
|
| 72 |
+
logging_dir='./logs',
|
| 73 |
+
logging_steps=500,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Step 8: Initialize Trainer
|
| 77 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
| 78 |
+
trainer = Trainer(
|
| 79 |
+
model=model,
|
| 80 |
+
args=training_args,
|
| 81 |
+
train_dataset=train_dataset,
|
| 82 |
+
tokenizer=tokenizer,
|
| 83 |
+
data_collator=data_collator
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Step 9: Fine-tune the model
|
| 87 |
+
trainer.train()
|
| 88 |
+
|
| 89 |
+
# Save the trained model and tokenizer
|
| 90 |
+
model.save_pretrained("./trained_model")
|
| 91 |
+
tokenizer.save_pretrained("./trained_model")
|
| 92 |
+
|
| 93 |
+
# Optional: Test the chatbot after training
|
| 94 |
+
def generate_response(input_text):
|
| 95 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 96 |
+
outputs = model.generate(inputs['input_ids'], max_length=50, pad_token_id=tokenizer.eos_token_id)
|
| 97 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 98 |
+
return response
|
| 99 |
+
|
| 100 |
+
# Gradio Interface
|
| 101 |
+
def chatbot_interface(input_text):
|
| 102 |
+
return generate_response(input_text)
|
| 103 |
+
|
| 104 |
+
iface = gr.Interface(fn=chatbot_interface, inputs="text", outputs="text", live=True)
|
| 105 |
+
iface.launch()
|