import numpy as np import pandas as pd import librosa import skops.io as sio import gradio as gr import warnings def remove_warnings(): warnings.filterwarnings('ignore') ## Voice Data Feature Extraction ### extract the features from the audio files using mfcc def feature_extracter(fileName): audio,sample_rate = librosa.load(fileName,sr=None, mono=True, dtype=np.float32,res_type='kaiser_fast') mfcc_features = librosa.feature.mfcc(y=audio,sr=sample_rate,n_mfcc=30) mfccs_scaled_features = np.mean(mfcc_features.T, axis=0) return list(mfccs_scaled_features) def prediction_age_gender(fileName): remove_warnings() col_name = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4', 'Feature_5','Feature_6', 'Feature_7', 'Feature_8', 'Feature_9', 'Feature_10','Feature_11', 'Feature_12', 'Feature_13', 'Feature_14', 'Feature_15','Feature_16', 'Feature_17', 'Feature_18', 'Feature_19', 'Feature_20','Feature_21', 'Feature_22', 'Feature_23', 'Feature_24', 'Feature_25','Feature_26', 'Feature_27', 'Feature_28', 'Feature_29', 'Feature_30'] observation = [feature_extracter(fileName)] observation = pd.DataFrame(observation, columns = col_name) ## scaling the observation scaler = sio.load('scaler') scaled_observation = scaler.transform(observation) scaled_observation = pd.DataFrame(scaled_observation, columns = col_name) ### Gender classification model gender_model = sio.load('KNN_gender_detection') gender_predict = gender_model.predict_proba(scaled_observation.values) ## considering the labels 1 = male 0 = female gender_dict = {} gender_dict['Female'] = gender_predict[0][0] gender_dict['Male'] = gender_predict[0][1] ### Age classification model age_model = sio.load('KNN_age_model') age_predict = age_model.predict_proba(scaled_observation.values) age_dict = {} age_dict['Eighties'] = age_predict[0][0] age_dict['Fifties'] = age_predict[0][1] age_dict['Fourties'] = age_predict[0][2] age_dict['Seventies'] = age_predict[0][3] age_dict['Sixties'] = age_predict[0][4] age_dict['Teens'] = age_predict[0][5] age_dict['Thirties'] = age_predict[0][6] age_dict['Twenties'] = age_predict[0][7] age_dict['Other'] = 1 - age_dict['Eighties'] - age_dict['Fifties'] - age_dict['Fourties'] - age_dict['Seventies'] - age_dict['Sixties'] - age_dict['Teens'] - age_dict['Thirties'] - age_dict['Twenties'] #final = "The person is a: " + gender + " of the age group: " + age return gender_dict, age_dict demo = gr.Interface( prediction_age_gender, inputs = [gr.Audio(sources=["microphone","upload"], type = 'filepath', label = 'Audio File')], outputs = [gr.Label(num_top_classes=2, label = 'Gender'), gr.Label(num_top_classes=9, label = 'Age Class')], #gr.Text() ).launch(share=True, debug = True)