shivanshg's picture
Update app.py
07855a5
import numpy as np
import pandas as pd
import librosa
import skops.io as sio
import gradio as gr
import warnings
def remove_warnings():
warnings.filterwarnings('ignore')
## Voice Data Feature Extraction
### extract the features from the audio files using mfcc
def feature_extracter(fileName):
audio,sample_rate = librosa.load(fileName,sr=None, mono=True, dtype=np.float32,res_type='kaiser_fast')
mfcc_features = librosa.feature.mfcc(y=audio,sr=sample_rate,n_mfcc=30)
mfccs_scaled_features = np.mean(mfcc_features.T, axis=0)
return list(mfccs_scaled_features)
def prediction_age_gender(fileName):
remove_warnings()
col_name = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4', 'Feature_5','Feature_6', 'Feature_7', 'Feature_8', 'Feature_9', 'Feature_10','Feature_11', 'Feature_12', 'Feature_13', 'Feature_14', 'Feature_15','Feature_16', 'Feature_17', 'Feature_18', 'Feature_19', 'Feature_20','Feature_21', 'Feature_22', 'Feature_23', 'Feature_24', 'Feature_25','Feature_26', 'Feature_27', 'Feature_28', 'Feature_29', 'Feature_30']
observation = [feature_extracter(fileName)]
observation = pd.DataFrame(observation, columns = col_name)
## scaling the observation
scaler = sio.load('scaler')
scaled_observation = scaler.transform(observation)
scaled_observation = pd.DataFrame(scaled_observation, columns = col_name)
### Gender classification model
gender_model = sio.load('KNN_gender_detection')
gender_predict = gender_model.predict_proba(scaled_observation.values)
## considering the labels 1 = male 0 = female
gender_dict = {}
gender_dict['Female'] = gender_predict[0][0]
gender_dict['Male'] = gender_predict[0][1]
### Age classification model
age_model = sio.load('KNN_age_model')
age_predict = age_model.predict_proba(scaled_observation.values)
age_dict = {}
age_dict['Eighties'] = age_predict[0][0]
age_dict['Fifties'] = age_predict[0][1]
age_dict['Fourties'] = age_predict[0][2]
age_dict['Seventies'] = age_predict[0][3]
age_dict['Sixties'] = age_predict[0][4]
age_dict['Teens'] = age_predict[0][5]
age_dict['Thirties'] = age_predict[0][6]
age_dict['Twenties'] = age_predict[0][7]
age_dict['Other'] = 1 - age_dict['Eighties'] - age_dict['Fifties'] - age_dict['Fourties'] - age_dict['Seventies'] - age_dict['Sixties'] - age_dict['Teens'] - age_dict['Thirties'] - age_dict['Twenties']
#final = "The person is a: " + gender + " of the age group: " + age
return gender_dict, age_dict
demo = gr.Interface(
prediction_age_gender,
inputs = [gr.Audio(sources=["microphone","upload"], type = 'filepath', label = 'Audio File')],
outputs = [gr.Label(num_top_classes=2, label = 'Gender'), gr.Label(num_top_classes=9, label = 'Age Class')],
#gr.Text()
).launch(share=True, debug = True)