File size: 8,425 Bytes
a05511c
 
 
 
 
 
 
0c753c1
 
a05511c
0c753c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05511c
0c753c1
 
 
 
 
 
 
 
 
 
 
 
 
a05511c
0c753c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05511c
 
51b0e83
16f1995
 
a05511c
16f1995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05511c
 
 
 
 
 
 
 
226ba40
a05511c
 
 
 
28cdb03
 
 
 
 
 
 
 
 
 
 
 
 
 
a05511c
 
 
 
 
 
 
 
 
 
a72d2fc
 
 
 
 
a05511c
 
 
 
 
 
 
a72d2fc
 
 
 
 
a05511c
 
 
 
 
 
0c753c1
a05511c
 
16f1995
a05511c
 
 
a72d2fc
 
 
 
 
 
 
 
a05511c
 
 
 
 
16f1995
 
30d525f
a05511c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import os
import requests

from PIL import Image

def face_compare(frame1, frame2):
    url = "https://face.miniai.live/api/face_match"
    files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')}
    r = requests.post(url=url, files=files)
    response = r.json()

    detections = response.get("detections", [])
    matches = response.get("match", [])
    detection_rows = ""
    match_rows = ""

    # Process detections
    for detection in detections:
        face_image = detection.get("face", "")
        face_img_tag = f"<img src='data:image/png;base64,{face_image}' width='100' />" if face_image else "N/A"
        first_face_index = detection.get("firstFaceIndex", "N/A")
        second_face_index = detection.get("secondFaceIndex", "N/A")

        detection_rows += f"""
        <tr>
            <td>{first_face_index}</td>
            <td>{second_face_index}</td>
            <td>{face_img_tag}</td>
        </tr>
        """

    # Process matches
    for match in matches:
        first_face_index = match.get("firstFaceIndex", "N/A")
        second_face_index = match.get("secondFaceIndex", "N/A")
        similarity = match.get("similarity", "N/A")

        match_rows += f"""
        <tr>
            <td>{first_face_index}</td>
            <td>{second_face_index}</td>
            <td>{similarity:.6f}</td>
        </tr>
        """

    # Create HTML tables
    detections_table = f"""
    <h3>Face Detection</h3>
    <table border="1" style="border-collapse: collapse; width: 100%;">
        <tr>
            <th>First Face Index</th>
            <th>Second Face Index</th>
            <th>Face Image</th>
        </tr>
        {detection_rows}
    </table>
    """

    matches_table = f"""
    <h3>Matching Results</h3>
    <table border="1" style="border-collapse: collapse; width: 100%;">
        <tr>
            <th>First Face Index</th>
            <th>Second Face Index</th>
            <th>Similarity</th>
        </tr>
        {match_rows}
    </table>
    """

    return detections_table + matches_table

def check_liveness(frame):
    url = "https://facelive.miniai.live/api/check_liveness"
    files = {'image': open(frame, 'rb')}
    r = requests.post(url=url, files=files)

    html = None
    table_value = ""

    for key, value in r.json().items():
        row_value = ("<tr>"
                        "<td>{key}</td>"
                        "<td>{value}</td>"
                    "</tr>".format(key=key, value=value))
        table_value = table_value + row_value

    html = ("<table>"
                "<tr>"
                    "<th style=""width:30%"">Field</th>"
                    "<th style=""width:50%"">Value</th>"
                "</tr>"
                "{table_value}"
                "</table>".format(table_value=table_value))
    
    return html

# APP Interface
with gr.Blocks() as MiniAIdemo:
    gr.Markdown(
        """
        <a href="https://miniai.live" style="display: flex; align-items: center;">
            <img src="https://miniai.live/wp-content/uploads/2024/02/logo_name-1-768x426-1.png" style="width: 18%; margin-right: 15px;"/>
            <div>
                <p style="font-size: 40px; font-weight: bold; margin-right: 20px;">FaceRecognition-LivenessDetection SDK Demo</p>
                <p style="font-size: 20px; margin-right: 0;">Experience our NIST FRVT Top Ranked FaceRecognition, iBeta 2 Certified Face Liveness Detection Engine</p>
            </div>
        </a>
        <br/>
        <div style="display: flex; justify-content: center; align-items: center;"> 
           <table style="text-align: center;">
              <tr>
                 <td style="text-align: center; vertical-align: middle;"><a href="https://github.com/MiniAiLive"><img src="https://miniai.live/wp-content/uploads/2024/10/new_git-1-300x67.png" style="height: 50px; margin-right: 5px;" title="GITHUB"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://huggingface.co/MiniAiLive"><img src="https://miniai.live/wp-content/uploads/2024/10/new_hugging-1-300x67.png" style="height: 50px; margin-right: 5px;" title="HuggingFace"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://demo.miniai.live"><img src="https://miniai.live/wp-content/uploads/2024/10/new_gradio-300x67.png" style="height: 50px; margin-right: 5px;" title="Gradio"/></a></td> 
              </tr> 
              <tr>
                 <td style="text-align: center; vertical-align: middle;"><a href="https://docs.miniai.live/"><img src="https://miniai.live/wp-content/uploads/2024/10/a-300x70.png" style="height: 50px; margin-right: 5px;" title="Documentation"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://www.youtube.com/@miniailive"><img src="https://miniai.live/wp-content/uploads/2024/10/Untitled-1-300x70.png" style="height: 50px; margin-right: 5px;" title="Youtube"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://play.google.com/store/apps/dev?id=5831076207730531667"><img src="https://miniai.live/wp-content/uploads/2024/10/googleplay-300x62.png" style="height: 50px; margin-right: 5px;" title="Google Play"/></a></td>
              </tr>
           </table>
        </div>
        <br/>
        """
    )
    with gr.Tabs():
        with gr.Tab("Face Recognition"):
            with gr.Row():
                with gr.Column():
                    im_match_in1 = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/compare/demo-pic22.jpg",
                            "images/compare/demo-pic60.jpg",
                            "images/compare/demo-pic35.jpg",
                            "images/compare/demo-pic33.jpg",
                            "images/compare/demo-pic34.jpg",
                        ],
                        inputs=im_match_in1
                    )
                with gr.Column():
                    im_match_in2 = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/compare/demo-pic41.jpg",
                            "images/compare/demo-pic32.jpg",
                            "images/compare/demo-pic39.jpg",
                            "images/compare/demo-pic61.jpg",
                            "images/compare/demo-pic40.jpg",
                        ],
                        inputs=im_match_in2
                    )
                with gr.Column():
                    txt_compare_out = gr.HTML()
            btn_f_match = gr.Button("Check Comparing!", variant='primary')
            btn_f_match.click(face_compare, inputs=[im_match_in1, im_match_in2], outputs=txt_compare_out)
        with gr.Tab("Face Liveness Detection"):
            with gr.Row():
                with gr.Column():
                    im_liveness_in = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/liveness/f_real_andr.jpg",
                            "images/liveness/f_fake_andr_mask3d.jpg",
                            "images/liveness/f_fake_andr_monitor.jpg",
                            "images/liveness/f_fake_andr_outline.jpg",
                            "images/liveness/f_fake_andr_outline3d.jpg",
                            "images/liveness/1.jpg",
                            "images/liveness/3.png",
                            "images/liveness/4.jpg",
                        ],
                        inputs=im_liveness_in
                    )
                    btn_f_liveness = gr.Button("Check Liveness!", variant='primary')
                with gr.Column():
                    livness_result_output = gr.HTML()
            btn_f_liveness.click(check_liveness, inputs=im_liveness_in, outputs=livness_result_output)
    gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FMiniAiLive%2FFaceRecognition-LivenessDetection-Demo"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FMiniAiLive%2FFaceRecognition-LivenessDetection-Demo&label=VISITORS&labelColor=%2337d67a&countColor=%23ff8a65&style=plastic&labelStyle=none" /></a>')
if __name__ == "__main__":
    MiniAIdemo.launch()