removing Thread
Browse files
app.py
CHANGED
@@ -47,7 +47,7 @@ class BSIChatbot:
|
|
47 |
self.docs = docs_path
|
48 |
self.rerank_model_path = model_paths['rerank_model_path']
|
49 |
|
50 |
-
|
51 |
def initialize_embedding_model(self, rebuild_embeddings: bool):
|
52 |
raw_knowledge_base = []
|
53 |
|
@@ -94,7 +94,7 @@ class BSIChatbot:
|
|
94 |
self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model, allow_dangerous_deserialization=True)
|
95 |
print("DBG: Vectorstore Status Initialization:", self.vectorstore)
|
96 |
|
97 |
-
|
98 |
def retrieve_similar_embedding(self, query: str):
|
99 |
#lazy load
|
100 |
#if (self.vectorstore == None):
|
@@ -104,7 +104,7 @@ class BSIChatbot:
|
|
104 |
query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
|
105 |
return self.vectorstore.similarity_search(query=query, k=20)
|
106 |
|
107 |
-
|
108 |
def initialize_llm(self):
|
109 |
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
|
110 |
llm = AutoModelForCausalLM.from_pretrained(self.llm_path, quantization_config=bnb_config)
|
|
|
47 |
self.docs = docs_path
|
48 |
self.rerank_model_path = model_paths['rerank_model_path']
|
49 |
|
50 |
+
@spaces.GPU
|
51 |
def initialize_embedding_model(self, rebuild_embeddings: bool):
|
52 |
raw_knowledge_base = []
|
53 |
|
|
|
94 |
self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model, allow_dangerous_deserialization=True)
|
95 |
print("DBG: Vectorstore Status Initialization:", self.vectorstore)
|
96 |
|
97 |
+
@spaces.GPU
|
98 |
def retrieve_similar_embedding(self, query: str):
|
99 |
#lazy load
|
100 |
#if (self.vectorstore == None):
|
|
|
104 |
query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
|
105 |
return self.vectorstore.similarity_search(query=query, k=20)
|
106 |
|
107 |
+
@spaces.GPU
|
108 |
def initialize_llm(self):
|
109 |
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
|
110 |
llm = AutoModelForCausalLM.from_pretrained(self.llm_path, quantization_config=bnb_config)
|