File size: 20,245 Bytes
494b09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Disable CUDA initialization
os.environ["allow_dangerous_deserialization"] = "True"
print(os.getcwd())
embedding_path="/home/user/app/docs/_embeddings/index.faiss"
print(f"Loading FAISS index from: {embedding_path}")
if not os.path.exists(embedding_path):
print("File not found!")
HF_KEY=os.getenv('Gated_Repo')
import spaces
import time
from typing import final
import asyncio
import torch
import gradio as gr
import threading
import re
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.docstore import InMemoryDocstore
from langchain_community.document_loaders import TextLoader
from langchain.docstore.document import Document as LangchainDocument
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.indexing import index
from langchain_core.vectorstores import VectorStore
from llama_index.core.node_parser import TextSplitter
from llama_index.legacy.vector_stores import FaissVectorStore
from pycparser.ply.yacc import token
from ragatouille import RAGPretrainedModel
from langchain_text_splitters import MarkdownHeaderTextSplitter, CharacterTextSplitter
from sentence_transformers import SentenceTransformer
from sqlalchemy.testing.suite.test_reflection import metadata
from sympy.solvers.diophantine.diophantine import length
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
from transformers import pipeline
#DEPR:from langchain.vectorstores import FAISS
import faiss
from langchain_community.vectorstores import FAISS
#DEPR: from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.utils import DistanceStrategy
from huggingface_hub import login
# Press Umschalt+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
login(token=HF_KEY)
vectorstore=None
rerankingModel=None
class BSIChatbot:
embedding_model = None
llmpipeline = None
llmtokenizer = None
vectorstore = None
streamer = None
images = [None]
# model_paths = {
# 'llm_path': 'meta-llama/Llama-3.2-3B-Instruct',
# 'embed_model_path': 'intfloat/multilingual-e5-large-instruct',
# 'rerank_model_path': 'domci/ColBERTv2-mmarco-de-0.1'
# }
llm_path = "meta-llama/Llama-3.2-3B-Instruct"
word_and_embed_model_path = "intfloat/multilingual-e5-large-instruct"
docs = "/home/user/app/docs"
#docs = "H:\\Uni\\Master\\Masterarbeit\\Masterarbeit\\daten\\_parsed_embed_test"
rerankModelPath="AdrienB134/ColBERTv1.0-german-mmarcoDE"
embedPath="/home/user/app/docs/_embeddings"
def __init__(self):
self.embedding_model = None
#self.vectorstore: VectorStore = None
def initializeEmbeddingModel(self, new_embedding):
global vectorstore
RAW_KNOWLEDGE_BASE = []
#Embedding, Vector generation and storing:
self.embedding_model = HuggingFaceEmbeddings(
model_name=self.word_and_embed_model_path,
multi_process=True,
model_kwargs={"device": "cuda"},
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
)
#index_cpu = faiss.IndexFlatL2(1024)
#res = faiss.StandardGpuResources()
#index_gpu = faiss.index_cpu_to_gpu(res, 0, index_cpu)
dirList = os.listdir(self.docs)
if (new_embedding==True):
for doc in dirList:
print(doc)
if (".md" in doc):
##doctxt = TextLoader(docs + "\\" + doc).load()
file = open(self.docs + "\\" + doc, 'r', encoding='utf-8')
doctxt = file.read()
RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content=doctxt, metadata={"source": doc}))
file.close()
if (".txt" in doc):
file = open(self.docs + "\\" + doc, 'r', encoding='cp1252')
doctxt = file.read()
if doc.replace(".txt",".png") in dirList:
RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content=doctxt, metadata={"source": doc.replace(".txt",".png")}))
if doc.replace(".txt",".jpg") in dirList:
RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content=doctxt, metadata={"source": doc.replace(".txt",".jpg")}))
file.close()
# RAW_KNOWLEDGE_BASE.append(txtLoader)
# print(RAW_KNOWLEDGE_BASE)
# Chunking starts here
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
("####", "Header 4"),
("#####", "Header 5"),
]
markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on,
strip_headers=True
)
tokenizer = AutoTokenizer.from_pretrained(self.word_and_embed_model_path)
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=512, # The maximum number of words in a chunk
chunk_overlap=0, # The number of characters to overlap between chunks
add_start_index=True, # If `True`, includes chunk's start index in metadata
strip_whitespace=True, # If `True`, strips whitespace from the start and end of every document
)
##Was macht man mit start Index herausfinden und wie metadata adden
docs_processed = []
for doc in RAW_KNOWLEDGE_BASE:
print(f"Word-Length in doc:{len(doc.page_content.split())}")
doc_cache = markdown_splitter.split_text(doc.page_content)
# print(f"Word-Length in doc_cache after MarkdownSplitter:{len(doc_cache.split())}")
doc_cache = text_splitter.split_documents(doc_cache)
# print(f"Word-Length in doc_cache after text_splitter:{len(doc_cache.split())}")
for chunk in doc_cache:
chunk.metadata.update({"source": doc.metadata['source']})
print(f"Chunk_Debug len: {len(chunk.page_content.split())} and Chunk:{chunk}")
# DEBUG:
# print(f"doc_cache after Metadata added:{doc_cache}\n")
docs_processed += doc_cache
#final_docs = []
#for doc in docs_processed:
# final_docs += text_splitter.split_documents([doc])
#docs_processed = final_docs
##Ab hier alt:
# MARKDOWN_SEPARATORS = [
# "\n\n",
# "---"
# "\n",
# " ",
# ""
# ]
#text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=512, # The maximum number of characters in a chunk
# chunk_overlap=100, # The number of characters to overlap between chunks
# add_start_index=True, # If `True`, includes chunk's start index in metadata
# strip_whitespace=True, # If `True`, strips whitespace from the start and end of every document
# separators=MARKDOWN_SEPARATORS,
#)
#docs_processed = []
#for doc in RAW_KNOWLEDGE_BASE:
# docs_processed += text_splitter.split_documents([doc])
print(f"Docs processed:{len(docs_processed)}")
# Max_Sequence_Length of e5 large instr = 512 Tokens
# Make sure the maximum length is below embedding size
lengths = [len(s.page_content) for s in docs_processed]
print(max(lengths))
#for l in docs_processed:
# print(f"Char-Length:{len(l.page_content.split())}")
# print(f"Tokenizer Length: {len(tokenizer.tokenize(l.page_content))}")
#if (max(lengths) > SentenceTransformer(self.word_and_embed_model_path).max_seq_length):
# print(
# f'Error: Fit chunking size into embedding model.. Chunk{max(lengths)} is bigger than {SentenceTransformer(self.word_and_embed_model_path).Max_Sequence_Length}')
start = time.time()
#docstore = InMemoryDocstore({str(i): doc for i, doc in enumerate(docs_processed)})
#index_to_docstore_id = {i: str(i) for i in range(len(docs_processed))}
vectorstore = FAISS.from_documents(docs_processed, self.embedding_model, distance_strategy=DistanceStrategy.COSINE)
#self.vectorstore = FAISS(
# embedding_function=self.embedding_model,
# index=index_gpu,
# distance_strategy=DistanceStrategy.COSINE,
# docstore=docstore,
# index_to_docstore_id=index_to_docstore_id
#)
#self.vectorstore.from_documents(docs_processed, self.embedding_model)
#index_cpu = faiss.index_gpu_to_cpu(self.vectorstore.index)
#self.vectorstore.index = index_cpu
vectorstore.save_local(self.embedPath)
#self.vectorstore.index = index_gpu
end = time.time()
print("Saving Embeddings took", end-start, "seconds!")
else:
start = time.time()
vectorstore = FAISS.load_local(self.embedPath, self.embedding_model, allow_dangerous_deserialization=True)
#self.vectorstore.index = index_gpu
end = time.time()
print("Loading Embeddings took", end - start, "seconds!")
def retrieveSimiliarEmbedding(self, query):
global vectorstore
print("Retrieving Embeddings...")
start = time.time()
query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
#self.vectorstore.
#retrieved_chunks = self.vectorstore.similarity_search(query=query, k=20)
retrieved_chunks = vectorstore.similarity_search(query=query, k=20)
#finalchunks = []
#for chunk in retrieved_chunks:
# if "---" not in chunk.page_content:
# finalchunks.append(chunk)
#retrieved_chunks = finalchunks
end = time.time()
print("Retrieving Chunks with similiar embeddings took", end - start, "seconds!")
#print("\n==================================Top document==================================")
#print(retrieved_chunks[0].page_content)
#print(retrieved_chunks[1].page_content)
#print(retrieved_chunks[2].page_content)
#print("==================================Metadata==================================")
#print(retrieved_chunks[0].metadata)
#print(retrieved_chunks[1].metadata)
#print(retrieved_chunks[2].metadata)
print(f"printing first chunk to see whats inside: {retrieved_chunks[0]}")
return retrieved_chunks
def initializeLLM(self):
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
#bnb_8bit_use_double_quant=True,
#bnb_8bit_quant_type="nf4",
#bnb_8bit_compute_dtype=torch.bfloat16,
)
llm = AutoModelForCausalLM.from_pretrained(
self.llm_path, quantization_config=bnb_config
)
self.llmtokenizer = AutoTokenizer.from_pretrained(self.llm_path)
self.streamer=TextIteratorStreamer(self.llmtokenizer, skip_prompt=True)
self.llmpipeline = pipeline(
model=llm,
tokenizer=self.llmtokenizer,
task="text-generation",
do_sample=True,
temperature=0.7,
repetition_penalty=1.1,
return_full_text=False,
streamer=self.streamer,
max_new_tokens=500,
)
def queryLLM(self,query):
#resp = self.llmpipeline(chat) Fixen
return(self.llmpipeline(query)[0]["generated_text"])
def initializeRerankingModel(self):
global rerankingModel
rerankingModel = RAGPretrainedModel.from_pretrained(self.rerankModelPath)
@spaces.GPU
def ragPrompt(self, query, rerankingStep, history):
prompt_in_chat_format = [
{
"role": "system",
"content": """You are an helpful Chatbot for the BSI IT-Grundschutz. Using the information contained in the context,
give a comprehensive answer to the question.
Respond only to the question asked, response should be concise and relevant but also give some context to the question.
Provide the source document when relevant for the understanding.
If the answer cannot be deduced from the context, do not give an answer.""",
},
{
"role": "user",
"content": """Context:
{context}
---
Chat-History:
{history}
---
Now here is the question you need to answer.
Question: {question}""",
},
]
RAG_PROMPT_TEMPLATE = self.llmtokenizer.apply_chat_template(
prompt_in_chat_format, tokenize=False, add_generation_prompt=True
)
retrieved_chunks = self.retrieveSimiliarEmbedding(query)
retrieved_chunks_text = []
#TODO Irgendwas stimmt hier mit den Listen nicht
for chunk in retrieved_chunks:
#TODO Hier noch was smarteres Überlegen für alle Header
if "Header 1" in chunk.metadata.keys():
retrieved_chunks_text.append(f"The Document is: '{chunk.metadata['source']}'\nHeader of the Section is: '{chunk.metadata['Header 1']}' and Content of it:{chunk.page_content}")
else:
retrieved_chunks_text.append(
f"The Document is: '{chunk.metadata['source']}'\nImage Description is: ':{chunk.page_content}")
i=1
for chunk in retrieved_chunks_text:
print(f"Retrieved Chunk number {i}:\n{chunk}")
i=i+1
if rerankingStep==True:
if rerankingModel == None:
print ("initializing Reranker-Model..")
self.initializeRerankingModel()
print("Starting Reranking Chunks...")
rerankingModel
retrieved_chunks_text=self.rerankingModel.rerank(query, retrieved_chunks_text,k=5)
retrieved_chunks_text=[chunk["content"] for chunk in retrieved_chunks_text]
i = 1
for chunk in retrieved_chunks_text:
print(f"Reranked Chunk number {i}:\n{chunk}")
i = i + 1
context = "\nExtracted documents:\n"
context += "".join([doc for i, doc in enumerate(retrieved_chunks_text)])
#Alles außer letzte Useranfrage
final_prompt = RAG_PROMPT_TEMPLATE.format(
question=query, context=context, history=history[:-1]
)
print(f"Query:\n{final_prompt}")
pattern = r"Filename:(.*?);"
match = re.findall(pattern, final_prompt)
self.images=match
#queryModel = HuggingFacePipeline(pipeline = self.llmpipeline)
generation_thread = threading.Thread(target=self.llmpipeline, args=(final_prompt,))
generation_thread.start()
return self.streamer
#answer=self.queryLLM(final_prompt)
#answer = self.llmpipeline(final_prompt)
#for token in answer:
# print (token["generated_text"])
# yield token["generated_text"]
# gen = queryModel.stream(final_prompt)
#return gen
#print (f"Answer:\n{answer}")
def returnImages(self):
imageList = []
for image in self.images:
imageList.append(f"{self.docs}\\{image}")
return imageList
def launchGr(self):
gr.Interface.from_pipeline(self.llmpipeline).launch()
if __name__ == '__main__':
#RAW_KNOWLEDGE_BASE = []
#RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content="1Text", metadata={"source": "bb"}))
#RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content="2Text", metadata={"source": "aa"}))
#RAW_KNOWLEDGE_BASE[0].metadata.update({"NeuerKey":"White"})
#print(RAW_KNOWLEDGE_BASE)
#time.sleep(10)
#{doc.page_content} [{doc.metadata}] => aktuellen Header in jeden Chunk embedden; Doc.Metadata retrieven
renewEmbeddings = False
reranking = True
bot = BSIChatbot()
bot.initializeEmbeddingModel(renewEmbeddings)
if reranking == True:
bot.initializeRerankingModel()
#TODO: DEBUG:
#bot.retrieveSimiliarEmbedding("Was ist der IT-Grundschutz?")
#TODO: DEBUG:
#time.sleep(10)
bot.initializeLLM()
#bot.retrieveSimiliarEmbedding("Welche Typen von Anforderungen gibt es im IT-Grundschutz?")
#bot.queryLLM("Welche Typen von Anforderungen gibt es im IT-Grundschutz?")
#bot.ragPrompt("""
#Welche Informationen beinhaltet die IT-Grundschutz-Methodik (BSI-Standard 200-2)? Wähle aus den folgenden Antwortmöglichkeiten (mehrere können richtig sein!):
#A: besonders schutzwürdigen Komponenten,
#B: methodische Hilfestellungen zur schrittweisen Einführung eines ISMS,
#C: wie die Informationssicherheit im laufenden Betrieb aufrechterhalten und kontinuierlich verbessert werden kann,
#D: effiziente Verfahren, um die allgemeinen Anforderungen des BSI-Standards 200-1 zu konkretisieren
#""", True)
#bot.launchGr()
with gr.Blocks() as demo:
with gr.Row() as row:
with gr.Column(scale=3):
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox()
clear = gr.Button("Clear")
reset = gr.Button("Reset")
with gr.Column(scale=1): # Bildergalerie
gallery = gr.Gallery(label="Bildergalerie",elem_id="gallery")
def user(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
def returnImages():
# Hier holen wir uns die Bildpfade und wandeln sie in gr.Image-Objekte um
image_paths = bot.returnImages()
print(f"returning images: {image_paths}")
return image_paths
def gradiobot(history: list):
start = time.time()
print(f"ragQuery hist -1:{history[-1].get('content')}")
print(f"ragQuery hist 0:{history[0].get('content')}")
print(f"fullHistory: {history}" )
bot_response = bot.ragPrompt(history[-1].get('content'), reranking, history)
history.append({"role": "assistant", "content": ""})
image_gallery = returnImages()
for token in bot_response:
if "eot_id" in token:
token = token.replace("<|eot_id|>","")
if token.startswith("-"):
token = f"\n{token}"
if re.match(r"^[1-9]\.",token):
token = f"\n{token}"
history[-1]['content'] += token
yield history, image_gallery
end = time.time()
print("End2End Query took", end - start, "seconds!")
def resetHistory():
return []
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
gradiobot, inputs=[chatbot], outputs=[chatbot, gallery]
)
clear.click(lambda: None, None, chatbot, queue=False)
reset.click(resetHistory, outputs=chatbot, queue=False)
demo.css = """
#gallery {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 10px;
height: 400px;
overflow: auto;
}
"""
demo.launch(allowed_paths=["/home/user/app/docs"])
#Answer: B, C und D => Korrekt!
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
|