#@title Prepare the Concepts Library to be used import requests import os import gradio as gr import wget import torch from torch import autocast from diffusers import StableDiffusionPipeline from huggingface_hub import HfApi from transformers import CLIPTextModel, CLIPTokenizer import html from share_btn import community_icon_html, loading_icon_html, share_js api = HfApi() models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1) models = [] pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda") def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None): loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu") # separate token and the embeds trained_token = list(loaded_learned_embeds.keys())[0] embeds = loaded_learned_embeds[trained_token] # cast to dtype of text_encoder dtype = text_encoder.get_input_embeddings().weight.dtype # add the token in tokenizer token = token if token is not None else trained_token num_added_tokens = tokenizer.add_tokens(token) i = 1 while(num_added_tokens == 0): print(f"The tokenizer already contains the token {token}.") token = f"{token[:-1]}-{i}>" print(f"Attempting to add the token {token}.") num_added_tokens = tokenizer.add_tokens(token) i+=1 # resize the token embeddings text_encoder.resize_token_embeddings(len(tokenizer)) # get the id for the token and assign the embeds token_id = tokenizer.convert_tokens_to_ids(token) text_encoder.get_input_embeddings().weight.data[token_id] = embeds return token print("Setting up the public library") for model in models_list: model_content = {} model_id = model.modelId model_content["id"] = model_id embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin" os.makedirs(model_id,exist_ok = True) if not os.path.exists(f"{model_id}/learned_embeds.bin"): try: wget.download(embeds_url, out=model_id) except: continue token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt" response = requests.get(token_identifier) token_name = response.text concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt" response = requests.get(concept_type) concept_name = response.text model_content["concept_type"] = concept_name images = [] for i in range(4): url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg" image_download = requests.get(url) url_code = image_download.status_code if(url_code == 200): file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image file.write(image_download.content) ## Saves file content file.close() images.append(f"{model_id}/{i}.jpeg") model_content["images"] = images #if token cannot be loaded, skip it try: learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name) except: continue model_content["token"] = learned_token models.append(model_content) #@title Run the app to navigate around [the Library](https://huggingface.co/sd-concepts-library) #@markdown Click the `Running on public URL:` result to run the Gradio app SELECT_LABEL = "Select concept" def assembleHTML(model): html_gallery = '' html_gallery = html_gallery+''' <div class="flex gr-gap gr-form-gap row gap-4 w-full flex-wrap" id="main_row"> ''' cap = 0 for model in models: html_gallery = html_gallery+f''' <div class="gr-block gr-box relative w-full overflow-hidden border-solid border border-gray-200 gr-panel"> <div class="output-markdown gr-prose" style="max-width: 100%;"> <h3> <a href="https://huggingface.co/{model["id"]}" target="_blank"> <code>{html.escape(model["token"])}</code> </a> </h3> </div> <div id="gallery" class="gr-block gr-box relative w-full overflow-hidden border-solid border border-gray-200"> <div class="wrap svelte-17ttdjv opacity-0"></div> <div class="absolute left-0 top-0 py-1 px-2 rounded-br-lg shadow-sm text-xs text-gray-500 flex items-center pointer-events-none bg-white z-20 border-b border-r border-gray-100 dark:bg-gray-900"> <span class="mr-2 h-[12px] w-[12px] opacity-80"> <svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"> <rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect> <circle cx="8.5" cy="8.5" r="1.5"></circle> <polyline points="21 15 16 10 5 21"></polyline> </svg> </span> {model["concept_type"]} </div> <div class="overflow-y-auto h-full p-2" style="position: relative;"> <div class="grid gap-2 grid-cols-2 sm:grid-cols-2 md:grid-cols-2 lg:grid-cols-2 xl:grid-cols-2 2xl:grid-cols-2 svelte-1g9btlg pt-6"> ''' for image in model["images"]: html_gallery = html_gallery + f''' <button class="gallery-item svelte-1g9btlg"> <img alt="" loading="lazy" class="h-full w-full overflow-hidden object-contain" src="file/{image}"> </button> ''' html_gallery = html_gallery+''' </div> <iframe style="display: block; position: absolute; top: 0; left: 0; width: 100%; height: 100%; overflow: hidden; border: 0; opacity: 0; pointer-events: none; z-index: -1;" aria-hidden="true" tabindex="-1" src="about:blank"></iframe> </div> </div> </div> ''' cap += 1 if(cap == 99): break html_gallery = html_gallery+''' </div> ''' return html_gallery def title_block(title, id): return gr.Markdown(f"### [`{title}`](https://huggingface.co/{id})") def image_block(image_list, concept_type): return gr.Gallery( label=concept_type, value=image_list, elem_id="gallery" ).style(grid=[2], height="auto") def checkbox_block(): checkbox = gr.Checkbox(label=SELECT_LABEL).style(container=False) return checkbox def infer(text): with autocast("cuda"): images_list = pipe( [text]*2, num_inference_steps=50, guidance_scale=7.5 ) output_images = [] for i, image in enumerate(images_list["sample"]): output_images.append(image) return output_images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) # idetnical to `infer` function without gradio state updates for share btn def infer_examples(text): with autocast("cuda"): images_list = pipe( [text]*2, num_inference_steps=50, guidance_scale=7.5 ) output_images = [] for i, image in enumerate(images_list["sample"]): output_images.append(image) return output_images css = ''' .gradio-container {font-family: 'IBM Plex Sans', sans-serif} #top_title{margin-bottom: .5em} #top_title h2{margin-bottom: 0; text-align: center} /*#main_row{flex-wrap: wrap; gap: 1em; max-height: 550px; overflow-y: scroll; flex-direction: row}*/ #component-3{height: 760px; overflow: auto} #component-9{position: sticky;top: 0;align-self: flex-start;} @media (min-width: 768px){#main_row > div{flex: 1 1 32%; margin-left: 0 !important}} .gr-prose code::before, .gr-prose code::after {content: "" !important} ::-webkit-scrollbar {width: 10px} ::-webkit-scrollbar-track {background: #f1f1f1} ::-webkit-scrollbar-thumb {background: #888} ::-webkit-scrollbar-thumb:hover {background: #555} .gr-button {white-space: nowrap} .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #prompt_input{flex: 1 3 auto; width: auto !important;} #prompt_area{margin-bottom: .75em} #prompt_area > div:first-child{flex: 1 3 auto} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } ''' examples = ["a <cat-toy> in <madhubani-art> style", "a <line-art> style mecha robot", "a piano being played by <bonzi>", "Candid photo of <cheburashka>, high resolution photo, trending on artstation, interior design"] with gr.Blocks(css=css) as demo: state = gr.Variable({ 'selected': -1 }) state = {} def update_state(i): global checkbox_states if(checkbox_states[i]): checkbox_states[i] = False state[i] = False else: state[i] = True checkbox_states[i] = True gr.HTML(''' <div style="text-align: center; max-width: 720px; margin: 0 auto;"> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; " > <svg width="0.65em" height="0.65em" viewBox="0 0 115 115" fill="none" xmlns="http://www.w3.org/2000/svg" > <rect width="23" height="23" fill="white"></rect> <rect y="69" width="23" height="23" fill="white"></rect> <rect x="23" width="23" height="23" fill="#AEAEAE"></rect> <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect> <rect x="46" width="23" height="23" fill="white"></rect> <rect x="46" y="69" width="23" height="23" fill="white"></rect> <rect x="69" width="23" height="23" fill="black"></rect> <rect x="69" y="69" width="23" height="23" fill="black"></rect> <rect x="92" width="23" height="23" fill="#D9D9D9"></rect> <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect> <rect x="115" y="46" width="23" height="23" fill="white"></rect> <rect x="115" y="115" width="23" height="23" fill="white"></rect> <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect> <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect> <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect> <rect x="92" y="69" width="23" height="23" fill="white"></rect> <rect x="69" y="46" width="23" height="23" fill="white"></rect> <rect x="69" y="115" width="23" height="23" fill="white"></rect> <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect> <rect x="46" y="46" width="23" height="23" fill="black"></rect> <rect x="46" y="115" width="23" height="23" fill="black"></rect> <rect x="46" y="69" width="23" height="23" fill="black"></rect> <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect> <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect> <rect x="23" y="69" width="23" height="23" fill="black"></rect> </svg> <h1 style="font-weight: 900; margin-bottom: 7px;"> Stable Diffusion Conceptualizer </h1> </div> <p style="margin-bottom: 10px; font-size: 94%"> Navigate through community created concepts and styles via Stable Diffusion Textual Inversion and pick yours for inference. To train your own concepts and contribute to the library <a style="text-decoration: underline" href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb">check out this notebook</a>. </p> </div> ''') with gr.Row(): with gr.Column(): gr.Markdown(f"### Navigate the top 100 Textual-Inversion community trained concepts. Use 600+ from [The Library](https://huggingface.co/sd-concepts-library)") with gr.Row(): image_blocks = [] #for i, model in enumerate(models): with gr.Box().style(border=None): gr.HTML(assembleHTML(models)) #title_block(model["token"], model["id"]) #image_blocks.append(image_block(model["images"], model["concept_type"])) with gr.Column(): with gr.Box(): with gr.Row(elem_id="prompt_area").style(mobile_collapse=False, equal_height=True): text = gr.Textbox( label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input" ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, full_width=False, ) btn = gr.Button("Run",elem_id="run_btn").style( margin=False, rounded=(False, True, True, False), full_width=False, ) with gr.Row().style(): infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[2], height="512px") with gr.Row(): gr.HTML("<p style=\"font-size: 95%;margin-top: .75em\">Prompting may not work as you are used to. <code>objects</code> may need the concept added at the end, <code>styles</code> may work better at the beginning. You can navigate on <a href='https://lexica.art'>lexica.art</a> to get inspired on prompts</p>") with gr.Row(): gr.Examples(examples=examples, fn=infer_examples, inputs=[text], outputs=infer_outputs, cache_examples=True) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) checkbox_states = {} inputs = [text] btn.click( infer, inputs=inputs, outputs=[infer_outputs, community_icon, loading_icon, share_button] ) share_button.click( None, [], [], _js=share_js, ) demo.queue(max_size=20).launch()