Spaces:
Runtime error
Runtime error
Upload 10 files
Browse files- src/backend/__init__.py +0 -0
- src/backend/base64_image.py +21 -0
- src/backend/controlnet.py +90 -0
- src/backend/device.py +23 -0
- src/backend/image_saver.py +75 -0
- src/backend/lcm_text_to_image.py +597 -0
- src/backend/lora.py +136 -0
- src/backend/safety_checker.py +29 -0
- src/backend/tiny_autoencoder.py +40 -0
- src/backend/utils.py +18 -0
src/backend/__init__.py
ADDED
|
File without changes
|
src/backend/base64_image.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
from base64 import b64encode, b64decode
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def pil_image_to_base64_str(
|
| 7 |
+
image: Image,
|
| 8 |
+
format: str = "JPEG",
|
| 9 |
+
) -> str:
|
| 10 |
+
buffer = BytesIO()
|
| 11 |
+
image.save(buffer, format=format)
|
| 12 |
+
buffer.seek(0)
|
| 13 |
+
img_base64 = b64encode(buffer.getvalue()).decode("utf-8")
|
| 14 |
+
return img_base64
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def base64_image_to_pil(base64_str) -> Image:
|
| 18 |
+
image_data = b64decode(base64_str)
|
| 19 |
+
image_buffer = BytesIO(image_data)
|
| 20 |
+
image = Image.open(image_buffer)
|
| 21 |
+
return image
|
src/backend/controlnet.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from diffusers import ControlNetModel
|
| 4 |
+
from backend.models.lcmdiffusion_setting import (
|
| 5 |
+
DiffusionTask,
|
| 6 |
+
ControlNetSetting,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Prepares ControlNet adapters for use with FastSD CPU
|
| 11 |
+
#
|
| 12 |
+
# This function loads the ControlNet adapters defined by the
|
| 13 |
+
# _lcm_diffusion_setting.controlnet_ object and returns a dictionary
|
| 14 |
+
# with the pipeline arguments required to use the loaded adapters
|
| 15 |
+
def load_controlnet_adapters(lcm_diffusion_setting) -> dict:
|
| 16 |
+
controlnet_args = {}
|
| 17 |
+
if (
|
| 18 |
+
lcm_diffusion_setting.controlnet is None
|
| 19 |
+
or not lcm_diffusion_setting.controlnet.enabled
|
| 20 |
+
):
|
| 21 |
+
return controlnet_args
|
| 22 |
+
|
| 23 |
+
logging.info("Loading ControlNet adapter")
|
| 24 |
+
controlnet_adapter = ControlNetModel.from_single_file(
|
| 25 |
+
lcm_diffusion_setting.controlnet.adapter_path,
|
| 26 |
+
# local_files_only=True,
|
| 27 |
+
use_safetensors=True,
|
| 28 |
+
)
|
| 29 |
+
controlnet_args["controlnet"] = controlnet_adapter
|
| 30 |
+
return controlnet_args
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Updates the ControlNet pipeline arguments to use for image generation
|
| 34 |
+
#
|
| 35 |
+
# This function uses the contents of the _lcm_diffusion_setting.controlnet_
|
| 36 |
+
# object to generate a dictionary with the corresponding pipeline arguments
|
| 37 |
+
# to be used for image generation; in particular, it sets the ControlNet control
|
| 38 |
+
# image and conditioning scale
|
| 39 |
+
def update_controlnet_arguments(lcm_diffusion_setting) -> dict:
|
| 40 |
+
controlnet_args = {}
|
| 41 |
+
if (
|
| 42 |
+
lcm_diffusion_setting.controlnet is None
|
| 43 |
+
or not lcm_diffusion_setting.controlnet.enabled
|
| 44 |
+
):
|
| 45 |
+
return controlnet_args
|
| 46 |
+
|
| 47 |
+
controlnet_args["controlnet_conditioning_scale"] = (
|
| 48 |
+
lcm_diffusion_setting.controlnet.conditioning_scale
|
| 49 |
+
)
|
| 50 |
+
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
|
| 51 |
+
controlnet_args["image"] = lcm_diffusion_setting.controlnet._control_image
|
| 52 |
+
elif lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
|
| 53 |
+
controlnet_args["control_image"] = (
|
| 54 |
+
lcm_diffusion_setting.controlnet._control_image
|
| 55 |
+
)
|
| 56 |
+
return controlnet_args
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Helper function to adjust ControlNet settings from a dictionary
|
| 60 |
+
def controlnet_settings_from_dict(
|
| 61 |
+
lcm_diffusion_setting,
|
| 62 |
+
dictionary,
|
| 63 |
+
) -> None:
|
| 64 |
+
if lcm_diffusion_setting is None or dictionary is None:
|
| 65 |
+
logging.error("Invalid arguments!")
|
| 66 |
+
return
|
| 67 |
+
if (
|
| 68 |
+
"controlnet" not in dictionary
|
| 69 |
+
or dictionary["controlnet"] is None
|
| 70 |
+
or len(dictionary["controlnet"]) == 0
|
| 71 |
+
):
|
| 72 |
+
logging.warning("ControlNet settings not found, ControlNet will be disabled")
|
| 73 |
+
lcm_diffusion_setting.controlnet = None
|
| 74 |
+
return
|
| 75 |
+
|
| 76 |
+
controlnet = ControlNetSetting()
|
| 77 |
+
controlnet.enabled = dictionary["controlnet"][0]["enabled"]
|
| 78 |
+
controlnet.conditioning_scale = dictionary["controlnet"][0]["conditioning_scale"]
|
| 79 |
+
controlnet.adapter_path = dictionary["controlnet"][0]["adapter_path"]
|
| 80 |
+
controlnet._control_image = None
|
| 81 |
+
image_path = dictionary["controlnet"][0]["control_image"]
|
| 82 |
+
if controlnet.enabled:
|
| 83 |
+
try:
|
| 84 |
+
controlnet._control_image = Image.open(image_path)
|
| 85 |
+
except (AttributeError, FileNotFoundError) as err:
|
| 86 |
+
print(err)
|
| 87 |
+
if controlnet._control_image is None:
|
| 88 |
+
logging.error("Wrong ControlNet control image! Disabling ControlNet")
|
| 89 |
+
controlnet.enabled = False
|
| 90 |
+
lcm_diffusion_setting.controlnet = controlnet
|
src/backend/device.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import platform
|
| 2 |
+
from constants import DEVICE
|
| 3 |
+
import torch
|
| 4 |
+
import openvino as ov
|
| 5 |
+
|
| 6 |
+
core = ov.Core()
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def is_openvino_device() -> bool:
|
| 10 |
+
if DEVICE.lower() == "cpu" or DEVICE.lower()[0] == "g" or DEVICE.lower()[0] == "n":
|
| 11 |
+
return True
|
| 12 |
+
else:
|
| 13 |
+
return False
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_device_name() -> str:
|
| 17 |
+
if DEVICE == "cuda" or DEVICE == "mps":
|
| 18 |
+
default_gpu_index = torch.cuda.current_device()
|
| 19 |
+
return torch.cuda.get_device_name(default_gpu_index)
|
| 20 |
+
elif platform.system().lower() == "darwin":
|
| 21 |
+
return platform.processor()
|
| 22 |
+
elif is_openvino_device():
|
| 23 |
+
return core.get_property(DEVICE.upper(), "FULL_DEVICE_NAME")
|
src/backend/image_saver.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from os import path, mkdir
|
| 3 |
+
from typing import Any
|
| 4 |
+
from uuid import uuid4
|
| 5 |
+
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
|
| 6 |
+
from utils import get_image_file_extension
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def get_exclude_keys():
|
| 10 |
+
exclude_keys = {
|
| 11 |
+
"init_image": True,
|
| 12 |
+
"generated_images": True,
|
| 13 |
+
"lora": {
|
| 14 |
+
"models_dir": True,
|
| 15 |
+
"path": True,
|
| 16 |
+
},
|
| 17 |
+
"dirs": True,
|
| 18 |
+
"controlnet": {
|
| 19 |
+
"adapter_path": True,
|
| 20 |
+
},
|
| 21 |
+
}
|
| 22 |
+
return exclude_keys
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class ImageSaver:
|
| 26 |
+
@staticmethod
|
| 27 |
+
def save_images(
|
| 28 |
+
output_path: str,
|
| 29 |
+
images: Any,
|
| 30 |
+
folder_name: str = "",
|
| 31 |
+
format: str = "PNG",
|
| 32 |
+
jpeg_quality: int = 90,
|
| 33 |
+
lcm_diffusion_setting: LCMDiffusionSetting = None,
|
| 34 |
+
) -> list[str]:
|
| 35 |
+
gen_id = uuid4()
|
| 36 |
+
image_ids = []
|
| 37 |
+
|
| 38 |
+
if images:
|
| 39 |
+
image_seeds = []
|
| 40 |
+
|
| 41 |
+
for index, image in enumerate(images):
|
| 42 |
+
|
| 43 |
+
image_seed = image.info.get('image_seed')
|
| 44 |
+
if image_seed is not None:
|
| 45 |
+
image_seeds.append(image_seed)
|
| 46 |
+
|
| 47 |
+
if not path.exists(output_path):
|
| 48 |
+
mkdir(output_path)
|
| 49 |
+
|
| 50 |
+
if folder_name:
|
| 51 |
+
out_path = path.join(
|
| 52 |
+
output_path,
|
| 53 |
+
folder_name,
|
| 54 |
+
)
|
| 55 |
+
else:
|
| 56 |
+
out_path = output_path
|
| 57 |
+
|
| 58 |
+
if not path.exists(out_path):
|
| 59 |
+
mkdir(out_path)
|
| 60 |
+
image_extension = get_image_file_extension(format)
|
| 61 |
+
image_file_name = f"{gen_id}-{index+1}{image_extension}"
|
| 62 |
+
image_ids.append(image_file_name)
|
| 63 |
+
image.save(path.join(out_path, image_file_name), quality = jpeg_quality)
|
| 64 |
+
if lcm_diffusion_setting:
|
| 65 |
+
data = lcm_diffusion_setting.model_dump(exclude=get_exclude_keys())
|
| 66 |
+
if image_seeds:
|
| 67 |
+
data['image_seeds'] = image_seeds
|
| 68 |
+
with open(path.join(out_path, f"{gen_id}.json"), "w") as json_file:
|
| 69 |
+
json.dump(
|
| 70 |
+
data,
|
| 71 |
+
json_file,
|
| 72 |
+
indent=4,
|
| 73 |
+
)
|
| 74 |
+
return image_ids
|
| 75 |
+
|
src/backend/lcm_text_to_image.py
ADDED
|
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
from math import ceil
|
| 3 |
+
from typing import Any, List
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from backend.device import is_openvino_device
|
| 9 |
+
from backend.controlnet import (
|
| 10 |
+
load_controlnet_adapters,
|
| 11 |
+
update_controlnet_arguments,
|
| 12 |
+
)
|
| 13 |
+
from backend.models.lcmdiffusion_setting import (
|
| 14 |
+
DiffusionTask,
|
| 15 |
+
LCMDiffusionSetting,
|
| 16 |
+
LCMLora,
|
| 17 |
+
)
|
| 18 |
+
from backend.openvino.pipelines import (
|
| 19 |
+
get_ov_image_to_image_pipeline,
|
| 20 |
+
get_ov_text_to_image_pipeline,
|
| 21 |
+
ov_load_tiny_autoencoder,
|
| 22 |
+
get_ov_diffusion_pipeline,
|
| 23 |
+
)
|
| 24 |
+
from backend.pipelines.lcm import (
|
| 25 |
+
get_image_to_image_pipeline,
|
| 26 |
+
get_lcm_model_pipeline,
|
| 27 |
+
load_taesd,
|
| 28 |
+
)
|
| 29 |
+
from backend.pipelines.lcm_lora import get_lcm_lora_pipeline
|
| 30 |
+
from constants import DEVICE, GGUF_THREADS
|
| 31 |
+
from diffusers import LCMScheduler
|
| 32 |
+
from image_ops import resize_pil_image
|
| 33 |
+
from backend.openvino.ov_hc_stablediffusion_pipeline import OvHcLatentConsistency
|
| 34 |
+
from backend.gguf.gguf_diffusion import (
|
| 35 |
+
GGUFDiffusion,
|
| 36 |
+
ModelConfig,
|
| 37 |
+
Txt2ImgConfig,
|
| 38 |
+
SampleMethod,
|
| 39 |
+
)
|
| 40 |
+
from paths import get_app_path
|
| 41 |
+
from pprint import pprint
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
# support for token merging; keeping it optional for now
|
| 45 |
+
import tomesd
|
| 46 |
+
except ImportError:
|
| 47 |
+
print("tomesd library unavailable; disabling token merging support")
|
| 48 |
+
tomesd = None
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class LCMTextToImage:
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
device: str = "cpu",
|
| 55 |
+
) -> None:
|
| 56 |
+
self.pipeline = None
|
| 57 |
+
self.use_openvino = False
|
| 58 |
+
self.device = ""
|
| 59 |
+
self.previous_model_id = None
|
| 60 |
+
self.previous_use_tae_sd = False
|
| 61 |
+
self.previous_use_lcm_lora = False
|
| 62 |
+
self.previous_ov_model_id = ""
|
| 63 |
+
self.previous_token_merging = 0.0
|
| 64 |
+
self.previous_safety_checker = False
|
| 65 |
+
self.previous_use_openvino = False
|
| 66 |
+
self.img_to_img_pipeline = None
|
| 67 |
+
self.is_openvino_init = False
|
| 68 |
+
self.previous_lora = None
|
| 69 |
+
self.task_type = DiffusionTask.text_to_image
|
| 70 |
+
self.previous_use_gguf_model = False
|
| 71 |
+
self.previous_gguf_model = None
|
| 72 |
+
self.torch_data_type = (
|
| 73 |
+
torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
|
| 74 |
+
)
|
| 75 |
+
self.ov_model_id = None
|
| 76 |
+
print(f"Torch datatype : {self.torch_data_type}")
|
| 77 |
+
|
| 78 |
+
def _pipeline_to_device(self):
|
| 79 |
+
print(f"Pipeline device : {DEVICE}")
|
| 80 |
+
print(f"Pipeline dtype : {self.torch_data_type}")
|
| 81 |
+
self.pipeline.to(
|
| 82 |
+
torch_device=DEVICE,
|
| 83 |
+
torch_dtype=self.torch_data_type,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
def _add_freeu(self):
|
| 87 |
+
pipeline_class = self.pipeline.__class__.__name__
|
| 88 |
+
if isinstance(self.pipeline.scheduler, LCMScheduler):
|
| 89 |
+
if pipeline_class == "StableDiffusionPipeline":
|
| 90 |
+
print("Add FreeU - SD")
|
| 91 |
+
self.pipeline.enable_freeu(
|
| 92 |
+
s1=0.9,
|
| 93 |
+
s2=0.2,
|
| 94 |
+
b1=1.2,
|
| 95 |
+
b2=1.4,
|
| 96 |
+
)
|
| 97 |
+
elif pipeline_class == "StableDiffusionXLPipeline":
|
| 98 |
+
print("Add FreeU - SDXL")
|
| 99 |
+
self.pipeline.enable_freeu(
|
| 100 |
+
s1=0.6,
|
| 101 |
+
s2=0.4,
|
| 102 |
+
b1=1.1,
|
| 103 |
+
b2=1.2,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def _enable_vae_tiling(self):
|
| 107 |
+
self.pipeline.vae.enable_tiling()
|
| 108 |
+
|
| 109 |
+
def _update_lcm_scheduler_params(self):
|
| 110 |
+
if isinstance(self.pipeline.scheduler, LCMScheduler):
|
| 111 |
+
self.pipeline.scheduler = LCMScheduler.from_config(
|
| 112 |
+
self.pipeline.scheduler.config,
|
| 113 |
+
beta_start=0.001,
|
| 114 |
+
beta_end=0.01,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
def _is_hetero_pipeline(self) -> bool:
|
| 118 |
+
return "square" in self.ov_model_id.lower()
|
| 119 |
+
|
| 120 |
+
def _load_ov_hetero_pipeline(self):
|
| 121 |
+
print("Loading Heterogeneous Compute pipeline")
|
| 122 |
+
if DEVICE.upper() == "NPU":
|
| 123 |
+
device = ["NPU", "NPU", "NPU"]
|
| 124 |
+
self.pipeline = OvHcLatentConsistency(self.ov_model_id, device)
|
| 125 |
+
else:
|
| 126 |
+
self.pipeline = OvHcLatentConsistency(self.ov_model_id)
|
| 127 |
+
|
| 128 |
+
def _generate_images_hetero_compute(
|
| 129 |
+
self,
|
| 130 |
+
lcm_diffusion_setting: LCMDiffusionSetting,
|
| 131 |
+
):
|
| 132 |
+
print("Using OpenVINO ")
|
| 133 |
+
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
|
| 134 |
+
return [
|
| 135 |
+
self.pipeline.generate(
|
| 136 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 137 |
+
neg_prompt=lcm_diffusion_setting.negative_prompt,
|
| 138 |
+
init_image=None,
|
| 139 |
+
strength=1.0,
|
| 140 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
| 141 |
+
)
|
| 142 |
+
]
|
| 143 |
+
else:
|
| 144 |
+
return [
|
| 145 |
+
self.pipeline.generate(
|
| 146 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 147 |
+
neg_prompt=lcm_diffusion_setting.negative_prompt,
|
| 148 |
+
init_image=lcm_diffusion_setting.init_image,
|
| 149 |
+
strength=lcm_diffusion_setting.strength,
|
| 150 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
| 151 |
+
)
|
| 152 |
+
]
|
| 153 |
+
|
| 154 |
+
def _is_valid_mode(
|
| 155 |
+
self,
|
| 156 |
+
modes: List,
|
| 157 |
+
) -> bool:
|
| 158 |
+
return modes.count(True) == 1 or modes.count(False) == 3
|
| 159 |
+
|
| 160 |
+
def _validate_mode(
|
| 161 |
+
self,
|
| 162 |
+
modes: List,
|
| 163 |
+
) -> None:
|
| 164 |
+
if not self._is_valid_mode(modes):
|
| 165 |
+
raise ValueError("Invalid mode,delete configs/settings.yaml and retry!")
|
| 166 |
+
|
| 167 |
+
def _is_sana_model(self) -> bool:
|
| 168 |
+
return "sana" in self.ov_model_id.lower()
|
| 169 |
+
|
| 170 |
+
def init(
|
| 171 |
+
self,
|
| 172 |
+
device: str = "cpu",
|
| 173 |
+
lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting(),
|
| 174 |
+
) -> None:
|
| 175 |
+
# Mode validation either LCM LoRA or OpenVINO or GGUF
|
| 176 |
+
|
| 177 |
+
modes = [
|
| 178 |
+
lcm_diffusion_setting.use_gguf_model,
|
| 179 |
+
lcm_diffusion_setting.use_openvino,
|
| 180 |
+
lcm_diffusion_setting.use_lcm_lora,
|
| 181 |
+
]
|
| 182 |
+
self._validate_mode(modes)
|
| 183 |
+
self.device = device
|
| 184 |
+
self.use_openvino = lcm_diffusion_setting.use_openvino
|
| 185 |
+
model_id = lcm_diffusion_setting.lcm_model_id
|
| 186 |
+
use_local_model = lcm_diffusion_setting.use_offline_model
|
| 187 |
+
use_tiny_auto_encoder = lcm_diffusion_setting.use_tiny_auto_encoder
|
| 188 |
+
use_lora = lcm_diffusion_setting.use_lcm_lora
|
| 189 |
+
lcm_lora: LCMLora = lcm_diffusion_setting.lcm_lora
|
| 190 |
+
token_merging = lcm_diffusion_setting.token_merging
|
| 191 |
+
self.ov_model_id = lcm_diffusion_setting.openvino_lcm_model_id
|
| 192 |
+
|
| 193 |
+
if lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
|
| 194 |
+
lcm_diffusion_setting.init_image = resize_pil_image(
|
| 195 |
+
lcm_diffusion_setting.init_image,
|
| 196 |
+
lcm_diffusion_setting.image_width,
|
| 197 |
+
lcm_diffusion_setting.image_height,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
if (
|
| 201 |
+
self.pipeline is None
|
| 202 |
+
or self.previous_model_id != model_id
|
| 203 |
+
or self.previous_use_tae_sd != use_tiny_auto_encoder
|
| 204 |
+
or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
|
| 205 |
+
or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
|
| 206 |
+
or self.previous_use_lcm_lora != use_lora
|
| 207 |
+
or self.previous_ov_model_id != self.ov_model_id
|
| 208 |
+
or self.previous_token_merging != token_merging
|
| 209 |
+
or self.previous_safety_checker != lcm_diffusion_setting.use_safety_checker
|
| 210 |
+
or self.previous_use_openvino != lcm_diffusion_setting.use_openvino
|
| 211 |
+
or self.previous_use_gguf_model != lcm_diffusion_setting.use_gguf_model
|
| 212 |
+
or self.previous_gguf_model != lcm_diffusion_setting.gguf_model
|
| 213 |
+
or (
|
| 214 |
+
self.use_openvino
|
| 215 |
+
and (
|
| 216 |
+
self.previous_task_type != lcm_diffusion_setting.diffusion_task
|
| 217 |
+
or self.previous_lora != lcm_diffusion_setting.lora
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
or lcm_diffusion_setting.rebuild_pipeline
|
| 221 |
+
):
|
| 222 |
+
if self.use_openvino and is_openvino_device():
|
| 223 |
+
if self.pipeline:
|
| 224 |
+
del self.pipeline
|
| 225 |
+
self.pipeline = None
|
| 226 |
+
gc.collect()
|
| 227 |
+
self.is_openvino_init = True
|
| 228 |
+
if (
|
| 229 |
+
lcm_diffusion_setting.diffusion_task
|
| 230 |
+
== DiffusionTask.text_to_image.value
|
| 231 |
+
):
|
| 232 |
+
print(
|
| 233 |
+
f"***** Init Text to image (OpenVINO) - {self.ov_model_id} *****"
|
| 234 |
+
)
|
| 235 |
+
if "flux" in self.ov_model_id.lower() or self._is_sana_model():
|
| 236 |
+
if self._is_sana_model():
|
| 237 |
+
print("Loading OpenVINO SANA Sprint pipeline")
|
| 238 |
+
else:
|
| 239 |
+
print("Loading OpenVINO Flux pipeline")
|
| 240 |
+
self.pipeline = get_ov_diffusion_pipeline(self.ov_model_id)
|
| 241 |
+
elif self._is_hetero_pipeline():
|
| 242 |
+
self._load_ov_hetero_pipeline()
|
| 243 |
+
else:
|
| 244 |
+
self.pipeline = get_ov_text_to_image_pipeline(
|
| 245 |
+
self.ov_model_id,
|
| 246 |
+
use_local_model,
|
| 247 |
+
)
|
| 248 |
+
elif (
|
| 249 |
+
lcm_diffusion_setting.diffusion_task
|
| 250 |
+
== DiffusionTask.image_to_image.value
|
| 251 |
+
):
|
| 252 |
+
if not self.pipeline and self._is_hetero_pipeline():
|
| 253 |
+
self._load_ov_hetero_pipeline()
|
| 254 |
+
else:
|
| 255 |
+
print(
|
| 256 |
+
f"***** Image to image (OpenVINO) - {self.ov_model_id} *****"
|
| 257 |
+
)
|
| 258 |
+
self.pipeline = get_ov_image_to_image_pipeline(
|
| 259 |
+
self.ov_model_id,
|
| 260 |
+
use_local_model,
|
| 261 |
+
)
|
| 262 |
+
elif lcm_diffusion_setting.use_gguf_model:
|
| 263 |
+
model = lcm_diffusion_setting.gguf_model.diffusion_path
|
| 264 |
+
print(f"***** Init Text to image (GGUF) - {model} *****")
|
| 265 |
+
# if self.pipeline:
|
| 266 |
+
# self.pipeline.terminate()
|
| 267 |
+
# del self.pipeline
|
| 268 |
+
# self.pipeline = None
|
| 269 |
+
self._init_gguf_diffusion(lcm_diffusion_setting)
|
| 270 |
+
else:
|
| 271 |
+
if self.pipeline or self.img_to_img_pipeline:
|
| 272 |
+
self.pipeline = None
|
| 273 |
+
self.img_to_img_pipeline = None
|
| 274 |
+
gc.collect()
|
| 275 |
+
|
| 276 |
+
controlnet_args = load_controlnet_adapters(lcm_diffusion_setting)
|
| 277 |
+
if use_lora:
|
| 278 |
+
print(
|
| 279 |
+
f"***** Init LCM-LoRA pipeline - {lcm_lora.base_model_id} *****"
|
| 280 |
+
)
|
| 281 |
+
self.pipeline = get_lcm_lora_pipeline(
|
| 282 |
+
lcm_lora.base_model_id,
|
| 283 |
+
lcm_lora.lcm_lora_id,
|
| 284 |
+
use_local_model,
|
| 285 |
+
torch_data_type=self.torch_data_type,
|
| 286 |
+
pipeline_args=controlnet_args,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
else:
|
| 290 |
+
print(f"***** Init LCM Model pipeline - {model_id} *****")
|
| 291 |
+
self.pipeline = get_lcm_model_pipeline(
|
| 292 |
+
model_id,
|
| 293 |
+
use_local_model,
|
| 294 |
+
controlnet_args,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
self.img_to_img_pipeline = get_image_to_image_pipeline(self.pipeline)
|
| 298 |
+
|
| 299 |
+
if tomesd and token_merging > 0.001:
|
| 300 |
+
print(f"***** Token Merging: {token_merging} *****")
|
| 301 |
+
tomesd.apply_patch(self.pipeline, ratio=token_merging)
|
| 302 |
+
tomesd.apply_patch(self.img_to_img_pipeline, ratio=token_merging)
|
| 303 |
+
|
| 304 |
+
if use_tiny_auto_encoder:
|
| 305 |
+
if self.use_openvino and is_openvino_device():
|
| 306 |
+
if not self._is_sana_model():
|
| 307 |
+
print("Using Tiny AutoEncoder (OpenVINO)")
|
| 308 |
+
ov_load_tiny_autoencoder(
|
| 309 |
+
self.pipeline,
|
| 310 |
+
use_local_model,
|
| 311 |
+
)
|
| 312 |
+
else:
|
| 313 |
+
print("Using Tiny Auto Encoder")
|
| 314 |
+
load_taesd(
|
| 315 |
+
self.pipeline,
|
| 316 |
+
use_local_model,
|
| 317 |
+
self.torch_data_type,
|
| 318 |
+
)
|
| 319 |
+
load_taesd(
|
| 320 |
+
self.img_to_img_pipeline,
|
| 321 |
+
use_local_model,
|
| 322 |
+
self.torch_data_type,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
if not self.use_openvino and not is_openvino_device():
|
| 326 |
+
self._pipeline_to_device()
|
| 327 |
+
|
| 328 |
+
if not self._is_hetero_pipeline():
|
| 329 |
+
if (
|
| 330 |
+
lcm_diffusion_setting.diffusion_task
|
| 331 |
+
== DiffusionTask.image_to_image.value
|
| 332 |
+
and lcm_diffusion_setting.use_openvino
|
| 333 |
+
):
|
| 334 |
+
self.pipeline.scheduler = LCMScheduler.from_config(
|
| 335 |
+
self.pipeline.scheduler.config,
|
| 336 |
+
)
|
| 337 |
+
else:
|
| 338 |
+
if not lcm_diffusion_setting.use_gguf_model:
|
| 339 |
+
self._update_lcm_scheduler_params()
|
| 340 |
+
|
| 341 |
+
if use_lora:
|
| 342 |
+
self._add_freeu()
|
| 343 |
+
|
| 344 |
+
self.previous_model_id = model_id
|
| 345 |
+
self.previous_ov_model_id = self.ov_model_id
|
| 346 |
+
self.previous_use_tae_sd = use_tiny_auto_encoder
|
| 347 |
+
self.previous_lcm_lora_base_id = lcm_lora.base_model_id
|
| 348 |
+
self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
|
| 349 |
+
self.previous_use_lcm_lora = use_lora
|
| 350 |
+
self.previous_token_merging = lcm_diffusion_setting.token_merging
|
| 351 |
+
self.previous_safety_checker = lcm_diffusion_setting.use_safety_checker
|
| 352 |
+
self.previous_use_openvino = lcm_diffusion_setting.use_openvino
|
| 353 |
+
self.previous_task_type = lcm_diffusion_setting.diffusion_task
|
| 354 |
+
self.previous_lora = lcm_diffusion_setting.lora.model_copy(deep=True)
|
| 355 |
+
self.previous_use_gguf_model = lcm_diffusion_setting.use_gguf_model
|
| 356 |
+
self.previous_gguf_model = lcm_diffusion_setting.gguf_model.model_copy(
|
| 357 |
+
deep=True
|
| 358 |
+
)
|
| 359 |
+
lcm_diffusion_setting.rebuild_pipeline = False
|
| 360 |
+
if (
|
| 361 |
+
lcm_diffusion_setting.diffusion_task
|
| 362 |
+
== DiffusionTask.text_to_image.value
|
| 363 |
+
):
|
| 364 |
+
print(f"Pipeline : {self.pipeline}")
|
| 365 |
+
elif (
|
| 366 |
+
lcm_diffusion_setting.diffusion_task
|
| 367 |
+
== DiffusionTask.image_to_image.value
|
| 368 |
+
):
|
| 369 |
+
if self.use_openvino and is_openvino_device():
|
| 370 |
+
print(f"Pipeline : {self.pipeline}")
|
| 371 |
+
else:
|
| 372 |
+
print(f"Pipeline : {self.img_to_img_pipeline}")
|
| 373 |
+
if self.use_openvino:
|
| 374 |
+
if lcm_diffusion_setting.lora.enabled:
|
| 375 |
+
print("Warning: Lora models not supported on OpenVINO mode")
|
| 376 |
+
elif not lcm_diffusion_setting.use_gguf_model:
|
| 377 |
+
adapters = self.pipeline.get_active_adapters()
|
| 378 |
+
print(f"Active adapters : {adapters}")
|
| 379 |
+
|
| 380 |
+
def _get_timesteps(self):
|
| 381 |
+
time_steps = self.pipeline.scheduler.config.get("timesteps")
|
| 382 |
+
time_steps_value = [int(time_steps)] if time_steps else None
|
| 383 |
+
return time_steps_value
|
| 384 |
+
|
| 385 |
+
def _compile_ov_pipeline(
|
| 386 |
+
self,
|
| 387 |
+
lcm_diffusion_setting,
|
| 388 |
+
):
|
| 389 |
+
self.pipeline.reshape(
|
| 390 |
+
batch_size=-1,
|
| 391 |
+
height=lcm_diffusion_setting.image_height,
|
| 392 |
+
width=lcm_diffusion_setting.image_width,
|
| 393 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
| 394 |
+
)
|
| 395 |
+
self.pipeline.compile()
|
| 396 |
+
|
| 397 |
+
def generate(
|
| 398 |
+
self,
|
| 399 |
+
lcm_diffusion_setting: LCMDiffusionSetting,
|
| 400 |
+
reshape: bool = False,
|
| 401 |
+
) -> Any:
|
| 402 |
+
guidance_scale = lcm_diffusion_setting.guidance_scale
|
| 403 |
+
img_to_img_inference_steps = lcm_diffusion_setting.inference_steps
|
| 404 |
+
check_step_value = int(
|
| 405 |
+
lcm_diffusion_setting.inference_steps * lcm_diffusion_setting.strength
|
| 406 |
+
)
|
| 407 |
+
if (
|
| 408 |
+
lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
|
| 409 |
+
and check_step_value < 1
|
| 410 |
+
):
|
| 411 |
+
img_to_img_inference_steps = ceil(1 / lcm_diffusion_setting.strength)
|
| 412 |
+
print(
|
| 413 |
+
f"Strength: {lcm_diffusion_setting.strength},{img_to_img_inference_steps}"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
pipeline_extra_args = {}
|
| 417 |
+
|
| 418 |
+
if lcm_diffusion_setting.use_seed:
|
| 419 |
+
cur_seed = lcm_diffusion_setting.seed
|
| 420 |
+
# for multiple images with a fixed seed, use sequential seeds
|
| 421 |
+
seeds = [
|
| 422 |
+
(cur_seed + i) for i in range(lcm_diffusion_setting.number_of_images)
|
| 423 |
+
]
|
| 424 |
+
else:
|
| 425 |
+
seeds = [
|
| 426 |
+
random.randint(0, 999999999)
|
| 427 |
+
for i in range(lcm_diffusion_setting.number_of_images)
|
| 428 |
+
]
|
| 429 |
+
|
| 430 |
+
if self.use_openvino:
|
| 431 |
+
# no support for generators; try at least to ensure reproducible results for single images
|
| 432 |
+
np.random.seed(seeds[0])
|
| 433 |
+
if self._is_hetero_pipeline():
|
| 434 |
+
torch.manual_seed(seeds[0])
|
| 435 |
+
lcm_diffusion_setting.seed = seeds[0]
|
| 436 |
+
else:
|
| 437 |
+
pipeline_extra_args["generator"] = [
|
| 438 |
+
torch.Generator(device=self.device).manual_seed(s) for s in seeds
|
| 439 |
+
]
|
| 440 |
+
|
| 441 |
+
is_openvino_pipe = lcm_diffusion_setting.use_openvino and is_openvino_device()
|
| 442 |
+
if is_openvino_pipe and not self._is_hetero_pipeline():
|
| 443 |
+
print("Using OpenVINO")
|
| 444 |
+
if self.is_openvino_init and self._is_sana_model():
|
| 445 |
+
self._compile_ov_pipeline(lcm_diffusion_setting)
|
| 446 |
+
|
| 447 |
+
if reshape and not self.is_openvino_init:
|
| 448 |
+
print("Reshape and compile")
|
| 449 |
+
self._compile_ov_pipeline(lcm_diffusion_setting)
|
| 450 |
+
|
| 451 |
+
if self.is_openvino_init:
|
| 452 |
+
self.is_openvino_init = False
|
| 453 |
+
|
| 454 |
+
if is_openvino_pipe and self._is_hetero_pipeline():
|
| 455 |
+
return self._generate_images_hetero_compute(lcm_diffusion_setting)
|
| 456 |
+
elif lcm_diffusion_setting.use_gguf_model:
|
| 457 |
+
return self._generate_images_gguf(lcm_diffusion_setting)
|
| 458 |
+
|
| 459 |
+
if lcm_diffusion_setting.clip_skip > 1:
|
| 460 |
+
# We follow the convention that "CLIP Skip == 2" means "skip
|
| 461 |
+
# the last layer", so "CLIP Skip == 1" means "no skipping"
|
| 462 |
+
pipeline_extra_args["clip_skip"] = lcm_diffusion_setting.clip_skip - 1
|
| 463 |
+
|
| 464 |
+
self.pipeline.safety_checker = None
|
| 465 |
+
if (
|
| 466 |
+
lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
|
| 467 |
+
and not is_openvino_pipe
|
| 468 |
+
):
|
| 469 |
+
self.img_to_img_pipeline.safety_checker = None
|
| 470 |
+
|
| 471 |
+
if (
|
| 472 |
+
not lcm_diffusion_setting.use_lcm_lora
|
| 473 |
+
and not lcm_diffusion_setting.use_openvino
|
| 474 |
+
and lcm_diffusion_setting.guidance_scale != 1.0
|
| 475 |
+
):
|
| 476 |
+
print("Not using LCM-LoRA so setting guidance_scale 1.0")
|
| 477 |
+
guidance_scale = 1.0
|
| 478 |
+
|
| 479 |
+
controlnet_args = update_controlnet_arguments(lcm_diffusion_setting)
|
| 480 |
+
if lcm_diffusion_setting.use_openvino:
|
| 481 |
+
if (
|
| 482 |
+
lcm_diffusion_setting.diffusion_task
|
| 483 |
+
== DiffusionTask.text_to_image.value
|
| 484 |
+
):
|
| 485 |
+
if self._is_sana_model():
|
| 486 |
+
result_images = self.pipeline(
|
| 487 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 488 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
| 489 |
+
guidance_scale=guidance_scale,
|
| 490 |
+
width=lcm_diffusion_setting.image_width,
|
| 491 |
+
height=lcm_diffusion_setting.image_height,
|
| 492 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
| 493 |
+
).images
|
| 494 |
+
else:
|
| 495 |
+
result_images = self.pipeline(
|
| 496 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 497 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
| 498 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
| 499 |
+
guidance_scale=guidance_scale,
|
| 500 |
+
width=lcm_diffusion_setting.image_width,
|
| 501 |
+
height=lcm_diffusion_setting.image_height,
|
| 502 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
| 503 |
+
).images
|
| 504 |
+
elif (
|
| 505 |
+
lcm_diffusion_setting.diffusion_task
|
| 506 |
+
== DiffusionTask.image_to_image.value
|
| 507 |
+
):
|
| 508 |
+
result_images = self.pipeline(
|
| 509 |
+
image=lcm_diffusion_setting.init_image,
|
| 510 |
+
strength=lcm_diffusion_setting.strength,
|
| 511 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 512 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
| 513 |
+
num_inference_steps=img_to_img_inference_steps * 3,
|
| 514 |
+
guidance_scale=guidance_scale,
|
| 515 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
| 516 |
+
).images
|
| 517 |
+
|
| 518 |
+
else:
|
| 519 |
+
if (
|
| 520 |
+
lcm_diffusion_setting.diffusion_task
|
| 521 |
+
== DiffusionTask.text_to_image.value
|
| 522 |
+
):
|
| 523 |
+
result_images = self.pipeline(
|
| 524 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 525 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
| 526 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
| 527 |
+
guidance_scale=guidance_scale,
|
| 528 |
+
width=lcm_diffusion_setting.image_width,
|
| 529 |
+
height=lcm_diffusion_setting.image_height,
|
| 530 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
| 531 |
+
timesteps=self._get_timesteps(),
|
| 532 |
+
**pipeline_extra_args,
|
| 533 |
+
**controlnet_args,
|
| 534 |
+
).images
|
| 535 |
+
|
| 536 |
+
elif (
|
| 537 |
+
lcm_diffusion_setting.diffusion_task
|
| 538 |
+
== DiffusionTask.image_to_image.value
|
| 539 |
+
):
|
| 540 |
+
result_images = self.img_to_img_pipeline(
|
| 541 |
+
image=lcm_diffusion_setting.init_image,
|
| 542 |
+
strength=lcm_diffusion_setting.strength,
|
| 543 |
+
prompt=lcm_diffusion_setting.prompt,
|
| 544 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
| 545 |
+
num_inference_steps=img_to_img_inference_steps,
|
| 546 |
+
guidance_scale=guidance_scale,
|
| 547 |
+
width=lcm_diffusion_setting.image_width,
|
| 548 |
+
height=lcm_diffusion_setting.image_height,
|
| 549 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
| 550 |
+
**pipeline_extra_args,
|
| 551 |
+
**controlnet_args,
|
| 552 |
+
).images
|
| 553 |
+
|
| 554 |
+
for i, seed in enumerate(seeds):
|
| 555 |
+
result_images[i].info["image_seed"] = seed
|
| 556 |
+
|
| 557 |
+
return result_images
|
| 558 |
+
|
| 559 |
+
def _init_gguf_diffusion(
|
| 560 |
+
self,
|
| 561 |
+
lcm_diffusion_setting: LCMDiffusionSetting,
|
| 562 |
+
):
|
| 563 |
+
config = ModelConfig()
|
| 564 |
+
config.model_path = lcm_diffusion_setting.gguf_model.diffusion_path
|
| 565 |
+
config.diffusion_model_path = lcm_diffusion_setting.gguf_model.diffusion_path
|
| 566 |
+
config.clip_l_path = lcm_diffusion_setting.gguf_model.clip_path
|
| 567 |
+
config.t5xxl_path = lcm_diffusion_setting.gguf_model.t5xxl_path
|
| 568 |
+
config.vae_path = lcm_diffusion_setting.gguf_model.vae_path
|
| 569 |
+
config.n_threads = GGUF_THREADS
|
| 570 |
+
print(f"GGUF Threads : {GGUF_THREADS} ")
|
| 571 |
+
print("GGUF - Model config")
|
| 572 |
+
pprint(lcm_diffusion_setting.gguf_model.model_dump())
|
| 573 |
+
self.pipeline = GGUFDiffusion(
|
| 574 |
+
get_app_path(), # Place DLL in fastsdcpu folder
|
| 575 |
+
config,
|
| 576 |
+
True,
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
def _generate_images_gguf(
|
| 580 |
+
self,
|
| 581 |
+
lcm_diffusion_setting: LCMDiffusionSetting,
|
| 582 |
+
):
|
| 583 |
+
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
|
| 584 |
+
t2iconfig = Txt2ImgConfig()
|
| 585 |
+
t2iconfig.prompt = lcm_diffusion_setting.prompt
|
| 586 |
+
t2iconfig.batch_count = lcm_diffusion_setting.number_of_images
|
| 587 |
+
t2iconfig.cfg_scale = lcm_diffusion_setting.guidance_scale
|
| 588 |
+
t2iconfig.height = lcm_diffusion_setting.image_height
|
| 589 |
+
t2iconfig.width = lcm_diffusion_setting.image_width
|
| 590 |
+
t2iconfig.sample_steps = lcm_diffusion_setting.inference_steps
|
| 591 |
+
t2iconfig.sample_method = SampleMethod.EULER
|
| 592 |
+
if lcm_diffusion_setting.use_seed:
|
| 593 |
+
t2iconfig.seed = lcm_diffusion_setting.seed
|
| 594 |
+
else:
|
| 595 |
+
t2iconfig.seed = -1
|
| 596 |
+
|
| 597 |
+
return self.pipeline.generate_text2mg(t2iconfig)
|
src/backend/lora.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
from os import path
|
| 3 |
+
from paths import get_file_name, FastStableDiffusionPaths
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# A basic class to keep track of the currently loaded LoRAs and
|
| 8 |
+
# their weights; the diffusers function \c get_active_adapters()
|
| 9 |
+
# returns a list of adapter names but not their weights so we need
|
| 10 |
+
# a way to keep track of the current LoRA weights to set whenever
|
| 11 |
+
# a new LoRA is loaded
|
| 12 |
+
class _lora_info:
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
path: str,
|
| 16 |
+
weight: float,
|
| 17 |
+
):
|
| 18 |
+
self.path = path
|
| 19 |
+
self.adapter_name = get_file_name(path)
|
| 20 |
+
self.weight = weight
|
| 21 |
+
|
| 22 |
+
def __del__(self):
|
| 23 |
+
self.path = None
|
| 24 |
+
self.adapter_name = None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
_loaded_loras = []
|
| 28 |
+
_current_pipeline = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# This function loads a LoRA from the LoRA path setting, so it's
|
| 32 |
+
# possible to load multiple LoRAs by calling this function more than
|
| 33 |
+
# once with a different LoRA path setting; note that if you plan to
|
| 34 |
+
# load multiple LoRAs and dynamically change their weights, you
|
| 35 |
+
# might want to set the LoRA fuse option to False
|
| 36 |
+
def load_lora_weight(
|
| 37 |
+
pipeline,
|
| 38 |
+
lcm_diffusion_setting,
|
| 39 |
+
):
|
| 40 |
+
if not lcm_diffusion_setting.lora.path:
|
| 41 |
+
raise Exception("Empty lora model path")
|
| 42 |
+
|
| 43 |
+
if not path.exists(lcm_diffusion_setting.lora.path):
|
| 44 |
+
raise Exception("Lora model path is invalid")
|
| 45 |
+
|
| 46 |
+
# If the pipeline has been rebuilt since the last call, remove all
|
| 47 |
+
# references to previously loaded LoRAs and store the new pipeline
|
| 48 |
+
global _loaded_loras
|
| 49 |
+
global _current_pipeline
|
| 50 |
+
if pipeline != _current_pipeline:
|
| 51 |
+
for lora in _loaded_loras:
|
| 52 |
+
del lora
|
| 53 |
+
del _loaded_loras
|
| 54 |
+
_loaded_loras = []
|
| 55 |
+
_current_pipeline = pipeline
|
| 56 |
+
|
| 57 |
+
current_lora = _lora_info(
|
| 58 |
+
lcm_diffusion_setting.lora.path,
|
| 59 |
+
lcm_diffusion_setting.lora.weight,
|
| 60 |
+
)
|
| 61 |
+
_loaded_loras.append(current_lora)
|
| 62 |
+
|
| 63 |
+
if lcm_diffusion_setting.lora.enabled:
|
| 64 |
+
print(f"LoRA adapter name : {current_lora.adapter_name}")
|
| 65 |
+
pipeline.load_lora_weights(
|
| 66 |
+
FastStableDiffusionPaths.get_lora_models_path(),
|
| 67 |
+
weight_name=Path(lcm_diffusion_setting.lora.path).name,
|
| 68 |
+
local_files_only=True,
|
| 69 |
+
adapter_name=current_lora.adapter_name,
|
| 70 |
+
)
|
| 71 |
+
update_lora_weights(
|
| 72 |
+
pipeline,
|
| 73 |
+
lcm_diffusion_setting,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if lcm_diffusion_setting.lora.fuse:
|
| 77 |
+
pipeline.fuse_lora()
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def get_lora_models(root_dir: str):
|
| 81 |
+
lora_models = glob.glob(f"{root_dir}/**/*.safetensors", recursive=True)
|
| 82 |
+
lora_models_map = {}
|
| 83 |
+
for file_path in lora_models:
|
| 84 |
+
lora_name = get_file_name(file_path)
|
| 85 |
+
if lora_name is not None:
|
| 86 |
+
lora_models_map[lora_name] = file_path
|
| 87 |
+
return lora_models_map
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# This function returns a list of (adapter_name, weight) tuples for the
|
| 91 |
+
# currently loaded LoRAs
|
| 92 |
+
def get_active_lora_weights():
|
| 93 |
+
active_loras = []
|
| 94 |
+
for lora_info in _loaded_loras:
|
| 95 |
+
active_loras.append(
|
| 96 |
+
(
|
| 97 |
+
lora_info.adapter_name,
|
| 98 |
+
lora_info.weight,
|
| 99 |
+
)
|
| 100 |
+
)
|
| 101 |
+
return active_loras
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# This function receives a pipeline, an lcm_diffusion_setting object and
|
| 105 |
+
# an optional list of updated (adapter_name, weight) tuples
|
| 106 |
+
def update_lora_weights(
|
| 107 |
+
pipeline,
|
| 108 |
+
lcm_diffusion_setting,
|
| 109 |
+
lora_weights=None,
|
| 110 |
+
):
|
| 111 |
+
global _loaded_loras
|
| 112 |
+
global _current_pipeline
|
| 113 |
+
if pipeline != _current_pipeline:
|
| 114 |
+
print("Wrong pipeline when trying to update LoRA weights")
|
| 115 |
+
return
|
| 116 |
+
if lora_weights:
|
| 117 |
+
for idx, lora in enumerate(lora_weights):
|
| 118 |
+
if _loaded_loras[idx].adapter_name != lora[0]:
|
| 119 |
+
print("Wrong adapter name in LoRA enumeration!")
|
| 120 |
+
continue
|
| 121 |
+
_loaded_loras[idx].weight = lora[1]
|
| 122 |
+
|
| 123 |
+
adapter_names = []
|
| 124 |
+
adapter_weights = []
|
| 125 |
+
if lcm_diffusion_setting.use_lcm_lora:
|
| 126 |
+
adapter_names.append("lcm")
|
| 127 |
+
adapter_weights.append(1.0)
|
| 128 |
+
for lora in _loaded_loras:
|
| 129 |
+
adapter_names.append(lora.adapter_name)
|
| 130 |
+
adapter_weights.append(lora.weight)
|
| 131 |
+
pipeline.set_adapters(
|
| 132 |
+
adapter_names,
|
| 133 |
+
adapter_weights=adapter_weights,
|
| 134 |
+
)
|
| 135 |
+
adapter_weights = zip(adapter_names, adapter_weights)
|
| 136 |
+
print(f"Adapters: {list(adapter_weights)}")
|
src/backend/safety_checker.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
from constants import SAFETY_CHECKER_MODEL
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SafetyChecker:
|
| 9 |
+
"""A class to check if an image is NSFW or not."""
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
mode_id: str = SAFETY_CHECKER_MODEL,
|
| 14 |
+
):
|
| 15 |
+
self.classifier = pipeline(
|
| 16 |
+
"image-classification",
|
| 17 |
+
model=mode_id,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def is_safe(
|
| 21 |
+
self,
|
| 22 |
+
image: Any,
|
| 23 |
+
) -> bool:
|
| 24 |
+
pred = self.classifier(image)
|
| 25 |
+
scores = {label["label"]: label["score"] for label in pred}
|
| 26 |
+
nsfw_score = scores.get("nsfw", 0)
|
| 27 |
+
normal_score = scores.get("normal", 0)
|
| 28 |
+
print(f"NSFW score: {nsfw_score}, Normal score: {normal_score}")
|
| 29 |
+
return normal_score > nsfw_score
|
src/backend/tiny_autoencoder.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from constants import (
|
| 2 |
+
TAESD_MODEL,
|
| 3 |
+
TAESDXL_MODEL,
|
| 4 |
+
TAESD_MODEL_OPENVINO,
|
| 5 |
+
TAESDXL_MODEL_OPENVINO,
|
| 6 |
+
TAEF1_MODEL_OPENVINO,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_tiny_autoencoder_repo_id(pipeline_class) -> str:
|
| 11 |
+
print(f"Pipeline class : {pipeline_class}")
|
| 12 |
+
if (
|
| 13 |
+
pipeline_class == "LatentConsistencyModelPipeline"
|
| 14 |
+
or pipeline_class == "StableDiffusionPipeline"
|
| 15 |
+
or pipeline_class == "StableDiffusionImg2ImgPipeline"
|
| 16 |
+
or pipeline_class == "StableDiffusionControlNetPipeline"
|
| 17 |
+
or pipeline_class == "StableDiffusionControlNetImg2ImgPipeline"
|
| 18 |
+
):
|
| 19 |
+
return TAESD_MODEL
|
| 20 |
+
elif (
|
| 21 |
+
pipeline_class == "StableDiffusionXLPipeline"
|
| 22 |
+
or pipeline_class == "StableDiffusionXLImg2ImgPipeline"
|
| 23 |
+
):
|
| 24 |
+
return TAESDXL_MODEL
|
| 25 |
+
elif (
|
| 26 |
+
pipeline_class == "OVStableDiffusionPipeline"
|
| 27 |
+
or pipeline_class == "OVStableDiffusionImg2ImgPipeline"
|
| 28 |
+
):
|
| 29 |
+
return TAESD_MODEL_OPENVINO
|
| 30 |
+
elif (
|
| 31 |
+
pipeline_class == "OVStableDiffusionXLPipeline"
|
| 32 |
+
or pipeline_class == "OVStableDiffusionXLImg2ImgPipeline"
|
| 33 |
+
):
|
| 34 |
+
return TAESDXL_MODEL_OPENVINO
|
| 35 |
+
elif pipeline_class == "OVFluxPipeline":
|
| 36 |
+
return TAEF1_MODEL_OPENVINO
|
| 37 |
+
else:
|
| 38 |
+
raise ValueError(
|
| 39 |
+
f"Tiny autoencoder not available for the pipeline class {pipeline_class}!"
|
| 40 |
+
)
|
src/backend/utils.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def get_blank_image(
|
| 5 |
+
width: int,
|
| 6 |
+
height: int,
|
| 7 |
+
) -> Image.Image:
|
| 8 |
+
"""
|
| 9 |
+
Create a blank image with the specified width and height.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
width (int): The width of the image.
|
| 13 |
+
height (int): The height of the image.
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
Image.Image: A blank image with the specified dimensions.
|
| 17 |
+
"""
|
| 18 |
+
return Image.new("RGB", (width, height), (0, 0, 0))
|