Spaces:
Runtime error
Runtime error
| import json | |
| from argparse import ArgumentParser | |
| from PIL import Image | |
| import constants | |
| from backend.controlnet import controlnet_settings_from_dict | |
| from backend.device import get_device_name | |
| from backend.models.gen_images import ImageFormat | |
| from backend.models.lcmdiffusion_setting import DiffusionTask | |
| from backend.upscale.tiled_upscale import generate_upscaled_image | |
| from constants import APP_VERSION, DEVICE | |
| from frontend.webui.image_variations_ui import generate_image_variations | |
| from models.interface_types import InterfaceType | |
| from paths import FastStableDiffusionPaths, ensure_path | |
| from state import get_context, get_settings | |
| from utils import show_system_info | |
| parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}") | |
| parser.add_argument( | |
| "-s", | |
| "--share", | |
| action="store_true", | |
| help="Create sharable link(Web UI)", | |
| required=False, | |
| ) | |
| group = parser.add_mutually_exclusive_group(required=False) | |
| group.add_argument( | |
| "-g", | |
| "--gui", | |
| action="store_true", | |
| help="Start desktop GUI", | |
| ) | |
| group.add_argument( | |
| "-w", | |
| "--webui", | |
| action="store_true", | |
| help="Start Web UI", | |
| ) | |
| group.add_argument( | |
| "-a", | |
| "--api", | |
| action="store_true", | |
| help="Start Web API server", | |
| ) | |
| group.add_argument( | |
| "-m", | |
| "--mcp", | |
| action="store_true", | |
| help="Start MCP(Model Context Protocol) server", | |
| ) | |
| group.add_argument( | |
| "-r", | |
| "--realtime", | |
| action="store_true", | |
| help="Start realtime inference UI(experimental)", | |
| ) | |
| group.add_argument( | |
| "-v", | |
| "--version", | |
| action="store_true", | |
| help="Version", | |
| ) | |
| parser.add_argument( | |
| "-b", | |
| "--benchmark", | |
| action="store_true", | |
| help="Run inference benchmark on the selected device", | |
| ) | |
| parser.add_argument( | |
| "--lcm_model_id", | |
| type=str, | |
| help="Model ID or path,Default stabilityai/sd-turbo", | |
| default="stabilityai/sd-turbo", | |
| ) | |
| parser.add_argument( | |
| "--openvino_lcm_model_id", | |
| type=str, | |
| help="OpenVINO Model ID or path,Default rupeshs/sd-turbo-openvino", | |
| default="rupeshs/sd-turbo-openvino", | |
| ) | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| help="Describe the image you want to generate", | |
| default="", | |
| ) | |
| parser.add_argument( | |
| "--negative_prompt", | |
| type=str, | |
| help="Describe what you want to exclude from the generation", | |
| default="", | |
| ) | |
| parser.add_argument( | |
| "--image_height", | |
| type=int, | |
| help="Height of the image", | |
| default=512, | |
| ) | |
| parser.add_argument( | |
| "--image_width", | |
| type=int, | |
| help="Width of the image", | |
| default=512, | |
| ) | |
| parser.add_argument( | |
| "--inference_steps", | |
| type=int, | |
| help="Number of steps,default : 1", | |
| default=1, | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| help="Guidance scale,default : 1.0", | |
| default=1.0, | |
| ) | |
| parser.add_argument( | |
| "--number_of_images", | |
| type=int, | |
| help="Number of images to generate ,default : 1", | |
| default=1, | |
| ) | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| help="Seed,default : -1 (disabled) ", | |
| default=-1, | |
| ) | |
| parser.add_argument( | |
| "--use_openvino", | |
| action="store_true", | |
| help="Use OpenVINO model", | |
| ) | |
| parser.add_argument( | |
| "--use_offline_model", | |
| action="store_true", | |
| help="Use offline model", | |
| ) | |
| parser.add_argument( | |
| "--clip_skip", | |
| type=int, | |
| help="CLIP Skip (1-12), default : 1 (disabled) ", | |
| default=1, | |
| ) | |
| parser.add_argument( | |
| "--token_merging", | |
| type=float, | |
| help="Token merging scale, 0.0 - 1.0, default : 0.0", | |
| default=0.0, | |
| ) | |
| parser.add_argument( | |
| "--use_safety_checker", | |
| action="store_true", | |
| help="Use safety checker", | |
| ) | |
| parser.add_argument( | |
| "--use_lcm_lora", | |
| action="store_true", | |
| help="Use LCM-LoRA", | |
| ) | |
| parser.add_argument( | |
| "--base_model_id", | |
| type=str, | |
| help="LCM LoRA base model ID,Default Lykon/dreamshaper-8", | |
| default="Lykon/dreamshaper-8", | |
| ) | |
| parser.add_argument( | |
| "--lcm_lora_id", | |
| type=str, | |
| help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5", | |
| default="latent-consistency/lcm-lora-sdv1-5", | |
| ) | |
| parser.add_argument( | |
| "-i", | |
| "--interactive", | |
| action="store_true", | |
| help="Interactive CLI mode", | |
| ) | |
| parser.add_argument( | |
| "-t", | |
| "--use_tiny_auto_encoder", | |
| action="store_true", | |
| help="Use Tiny AutoEncoder for TAESD/TAESDXL/TAEF1", | |
| ) | |
| parser.add_argument( | |
| "-f", | |
| "--file", | |
| type=str, | |
| help="Input image for img2img mode", | |
| default="", | |
| ) | |
| parser.add_argument( | |
| "--img2img", | |
| action="store_true", | |
| help="img2img mode; requires input file via -f argument", | |
| ) | |
| parser.add_argument( | |
| "--batch_count", | |
| type=int, | |
| help="Number of sequential generations", | |
| default=1, | |
| ) | |
| parser.add_argument( | |
| "--strength", | |
| type=float, | |
| help="Denoising strength for img2img and Image variations", | |
| default=0.3, | |
| ) | |
| parser.add_argument( | |
| "--sdupscale", | |
| action="store_true", | |
| help="Tiled SD upscale,works only for the resolution 512x512,(2x upscale)", | |
| ) | |
| parser.add_argument( | |
| "--upscale", | |
| action="store_true", | |
| help="EDSR SD upscale ", | |
| ) | |
| parser.add_argument( | |
| "--custom_settings", | |
| type=str, | |
| help="JSON file containing custom generation settings", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--usejpeg", | |
| action="store_true", | |
| help="Images will be saved as JPEG format", | |
| ) | |
| parser.add_argument( | |
| "--noimagesave", | |
| action="store_true", | |
| help="Disable image saving", | |
| ) | |
| parser.add_argument( | |
| "--imagequality", type=int, help="Output image quality [0 to 100]", default=90 | |
| ) | |
| parser.add_argument( | |
| "--lora", | |
| type=str, | |
| help="LoRA model full path e.g D:\lora_models\CuteCartoon15V-LiberteRedmodModel-Cartoon-CuteCartoonAF.safetensors", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--lora_weight", | |
| type=float, | |
| help="LoRA adapter weight [0 to 1.0]", | |
| default=0.5, | |
| ) | |
| parser.add_argument( | |
| "--port", | |
| type=int, | |
| help="Web server port", | |
| default=8000, | |
| ) | |
| args = parser.parse_args() | |
| if args.version: | |
| print(APP_VERSION) | |
| exit() | |
| # parser.print_help() | |
| print("FastSD CPU - ", APP_VERSION) | |
| show_system_info() | |
| print(f"Using device : {constants.DEVICE}") | |
| if args.webui: | |
| app_settings = get_settings() | |
| else: | |
| app_settings = get_settings() | |
| print(f"Output path : {app_settings.settings.generated_images.path}") | |
| ensure_path(app_settings.settings.generated_images.path) | |
| print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt") | |
| print( | |
| f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt" | |
| ) | |
| print( | |
| f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt" | |
| ) | |
| print( | |
| f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt" | |
| ) | |
| if args.noimagesave: | |
| app_settings.settings.generated_images.save_image = False | |
| else: | |
| app_settings.settings.generated_images.save_image = True | |
| app_settings.settings.generated_images.save_image_quality = args.imagequality | |
| if not args.realtime: | |
| # To minimize realtime mode dependencies | |
| from backend.upscale.upscaler import upscale_image | |
| from frontend.cli_interactive import interactive_mode | |
| if args.gui: | |
| from frontend.gui.ui import start_gui | |
| print("Starting desktop GUI mode(Qt)") | |
| start_gui( | |
| [], | |
| app_settings, | |
| ) | |
| elif args.webui: | |
| from frontend.webui.ui import start_webui | |
| print("Starting web UI mode") | |
| start_webui( | |
| args.share, | |
| ) | |
| elif args.realtime: | |
| from frontend.webui.realtime_ui import start_realtime_text_to_image | |
| print("Starting realtime text to image(EXPERIMENTAL)") | |
| start_realtime_text_to_image(args.share) | |
| elif args.api: | |
| from backend.api.web import start_web_server | |
| start_web_server(args.port) | |
| elif args.mcp: | |
| from backend.api.mcp_server import start_mcp_server | |
| start_mcp_server(args.port) | |
| else: | |
| context = get_context(InterfaceType.CLI) | |
| config = app_settings.settings | |
| if args.use_openvino: | |
| config.lcm_diffusion_setting.openvino_lcm_model_id = args.openvino_lcm_model_id | |
| else: | |
| config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id | |
| config.lcm_diffusion_setting.prompt = args.prompt | |
| config.lcm_diffusion_setting.negative_prompt = args.negative_prompt | |
| config.lcm_diffusion_setting.image_height = args.image_height | |
| config.lcm_diffusion_setting.image_width = args.image_width | |
| config.lcm_diffusion_setting.guidance_scale = args.guidance_scale | |
| config.lcm_diffusion_setting.number_of_images = args.number_of_images | |
| config.lcm_diffusion_setting.inference_steps = args.inference_steps | |
| config.lcm_diffusion_setting.strength = args.strength | |
| config.lcm_diffusion_setting.seed = args.seed | |
| config.lcm_diffusion_setting.use_openvino = args.use_openvino | |
| config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder | |
| config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora | |
| config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id | |
| config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id | |
| config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value | |
| config.lcm_diffusion_setting.lora.enabled = False | |
| config.lcm_diffusion_setting.lora.path = args.lora | |
| config.lcm_diffusion_setting.lora.weight = args.lora_weight | |
| config.lcm_diffusion_setting.lora.fuse = True | |
| if config.lcm_diffusion_setting.lora.path: | |
| config.lcm_diffusion_setting.lora.enabled = True | |
| if args.usejpeg: | |
| config.generated_images.format = ImageFormat.JPEG.value.upper() | |
| if args.seed > -1: | |
| config.lcm_diffusion_setting.use_seed = True | |
| else: | |
| config.lcm_diffusion_setting.use_seed = False | |
| config.lcm_diffusion_setting.use_offline_model = args.use_offline_model | |
| config.lcm_diffusion_setting.clip_skip = args.clip_skip | |
| config.lcm_diffusion_setting.token_merging = args.token_merging | |
| config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker | |
| # Read custom settings from JSON file | |
| custom_settings = {} | |
| if args.custom_settings: | |
| with open(args.custom_settings) as f: | |
| custom_settings = json.load(f) | |
| # Basic ControlNet settings; if ControlNet is enabled, an image is | |
| # required even in txt2img mode | |
| config.lcm_diffusion_setting.controlnet = None | |
| controlnet_settings_from_dict( | |
| config.lcm_diffusion_setting, | |
| custom_settings, | |
| ) | |
| # Interactive mode | |
| if args.interactive: | |
| # wrapper(interactive_mode, config, context) | |
| config.lcm_diffusion_setting.lora.fuse = False | |
| interactive_mode(config, context) | |
| # Start of non-interactive CLI image generation | |
| if args.img2img and args.file != "": | |
| config.lcm_diffusion_setting.init_image = Image.open(args.file) | |
| config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value | |
| elif args.img2img and args.file == "": | |
| print("Error : You need to specify a file in img2img mode") | |
| exit() | |
| elif args.upscale and args.file == "" and args.custom_settings == None: | |
| print("Error : You need to specify a file in SD upscale mode") | |
| exit() | |
| elif ( | |
| args.prompt == "" | |
| and args.file == "" | |
| and args.custom_settings == None | |
| and not args.benchmark | |
| ): | |
| print("Error : You need to provide a prompt") | |
| exit() | |
| if args.upscale: | |
| # image = Image.open(args.file) | |
| output_path = FastStableDiffusionPaths.get_upscale_filepath( | |
| args.file, | |
| 2, | |
| config.generated_images.format, | |
| ) | |
| result = upscale_image( | |
| context, | |
| args.file, | |
| output_path, | |
| 2, | |
| ) | |
| # Perform Tiled SD upscale (EXPERIMENTAL) | |
| elif args.sdupscale: | |
| if args.use_openvino: | |
| config.lcm_diffusion_setting.strength = 0.3 | |
| upscale_settings = None | |
| if custom_settings != {}: | |
| upscale_settings = custom_settings | |
| filepath = args.file | |
| output_format = config.generated_images.format | |
| if upscale_settings: | |
| filepath = upscale_settings["source_file"] | |
| output_format = upscale_settings["output_format"].upper() | |
| output_path = FastStableDiffusionPaths.get_upscale_filepath( | |
| filepath, | |
| 2, | |
| output_format, | |
| ) | |
| generate_upscaled_image( | |
| config, | |
| filepath, | |
| config.lcm_diffusion_setting.strength, | |
| upscale_settings=upscale_settings, | |
| context=context, | |
| tile_overlap=32 if config.lcm_diffusion_setting.use_openvino else 16, | |
| output_path=output_path, | |
| image_format=output_format, | |
| ) | |
| exit() | |
| # If img2img argument is set and prompt is empty, use image variations mode | |
| elif args.img2img and args.prompt == "": | |
| for i in range(0, args.batch_count): | |
| generate_image_variations( | |
| config.lcm_diffusion_setting.init_image, args.strength | |
| ) | |
| else: | |
| if args.benchmark: | |
| print("Initializing benchmark...") | |
| bench_lcm_setting = config.lcm_diffusion_setting | |
| bench_lcm_setting.prompt = "a cat" | |
| bench_lcm_setting.use_tiny_auto_encoder = False | |
| context.generate_text_to_image( | |
| settings=config, | |
| device=DEVICE, | |
| ) | |
| latencies = [] | |
| print("Starting benchmark please wait...") | |
| for _ in range(3): | |
| context.generate_text_to_image( | |
| settings=config, | |
| device=DEVICE, | |
| ) | |
| latencies.append(context.latency) | |
| avg_latency = sum(latencies) / 3 | |
| bench_lcm_setting.use_tiny_auto_encoder = True | |
| context.generate_text_to_image( | |
| settings=config, | |
| device=DEVICE, | |
| ) | |
| latencies = [] | |
| for _ in range(3): | |
| context.generate_text_to_image( | |
| settings=config, | |
| device=DEVICE, | |
| ) | |
| latencies.append(context.latency) | |
| avg_latency_taesd = sum(latencies) / 3 | |
| benchmark_name = "" | |
| if config.lcm_diffusion_setting.use_openvino: | |
| benchmark_name = "OpenVINO" | |
| else: | |
| benchmark_name = "PyTorch" | |
| bench_model_id = "" | |
| if bench_lcm_setting.use_openvino: | |
| bench_model_id = bench_lcm_setting.openvino_lcm_model_id | |
| elif bench_lcm_setting.use_lcm_lora: | |
| bench_model_id = bench_lcm_setting.lcm_lora.base_model_id | |
| else: | |
| bench_model_id = bench_lcm_setting.lcm_model_id | |
| benchmark_result = [ | |
| ["Device", f"{DEVICE.upper()},{get_device_name()}"], | |
| ["Stable Diffusion Model", bench_model_id], | |
| [ | |
| "Image Size ", | |
| f"{bench_lcm_setting.image_width}x{bench_lcm_setting.image_height}", | |
| ], | |
| [ | |
| "Inference Steps", | |
| f"{bench_lcm_setting.inference_steps}", | |
| ], | |
| [ | |
| "Benchmark Passes", | |
| 3, | |
| ], | |
| [ | |
| "Average Latency", | |
| f"{round(avg_latency, 3)} sec", | |
| ], | |
| [ | |
| "Average Latency(TAESD* enabled)", | |
| f"{round(avg_latency_taesd, 3)} sec", | |
| ], | |
| ] | |
| print() | |
| print( | |
| f" FastSD Benchmark - {benchmark_name:8} " | |
| ) | |
| print(f"-" * 80) | |
| for benchmark in benchmark_result: | |
| print(f"{benchmark[0]:35} - {benchmark[1]}") | |
| print(f"-" * 80) | |
| print("*TAESD - Tiny AutoEncoder for Stable Diffusion") | |
| else: | |
| for i in range(0, args.batch_count): | |
| context.generate_text_to_image( | |
| settings=config, | |
| device=DEVICE, | |
| ) | |