Spaces:
Runtime error
Runtime error
Create evaluate.py
Browse files- evaluate.py +32 -0
evaluate.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
def evaluate_model(model_name):
|
8 |
+
try:
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModel.from_pretrained(model_name)
|
11 |
+
except:
|
12 |
+
return None
|
13 |
+
|
14 |
+
dataset = load_dataset("persiannlp/STS-pairs", split="test[:100]")
|
15 |
+
embeddings1, embeddings2 = [], []
|
16 |
+
|
17 |
+
for item in dataset:
|
18 |
+
inputs1 = tokenizer(item["sentence1"], return_tensors="pt", truncation=True, padding=True)
|
19 |
+
inputs2 = tokenizer(item["sentence2"], return_tensors="pt", truncation=True, padding=True)
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
embed1 = model(**inputs1).last_hidden_state[:, 0, :]
|
23 |
+
embed2 = model(**inputs2).last_hidden_state[:, 0, :]
|
24 |
+
|
25 |
+
embeddings1.append(embed1.squeeze().numpy())
|
26 |
+
embeddings2.append(embed2.squeeze().numpy())
|
27 |
+
|
28 |
+
sims = [cosine_similarity([e1], [e2])[0][0] for e1, e2 in zip(embeddings1, embeddings2)]
|
29 |
+
labels = [item["similarity_score"] for item in dataset]
|
30 |
+
|
31 |
+
corr = np.corrcoef(sims, labels)[0, 1]
|
32 |
+
return float(corr)
|