Mehardeep7's picture
Deploy RAG pipeline to Hugging Face Spaces
d29a257
raw
history blame
14.4 kB
import gradio as gr
import numpy as np
import wikipedia
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import time
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
# Global variables to store models and data
embedding_model = None
qa_pipeline = None
chunks = None
embeddings = None
index = None
document = None
def load_models():
"""Load and cache the ML models"""
global embedding_model, qa_pipeline
if embedding_model is None:
print("πŸ€– Loading embedding model...")
embedding_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
print("πŸ€– Loading QA model...")
qa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
qa_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
qa_pipeline = pipeline("question-answering", model=qa_model, tokenizer=qa_tokenizer)
print("βœ… Models loaded successfully!")
return "βœ… Models are ready!"
def get_wikipedia_content(topic):
"""Fetch Wikipedia content"""
try:
page = wikipedia.page(topic)
return page.content, f"βœ… Successfully fetched '{topic}' article"
except wikipedia.exceptions.PageError:
return None, f"❌ Page '{topic}' not found. Please try a different topic."
except wikipedia.exceptions.DisambiguationError as e:
return None, f"⚠️ Ambiguous topic. Try one of these: {', '.join(e.options[:5])}"
def split_text(text, chunk_size=256, chunk_overlap=20):
"""Split text into overlapping chunks"""
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
# Split into sentences first
sentences = text.split('. ')
chunks = []
current_chunk = ""
for sentence in sentences:
test_chunk = current_chunk + ". " + sentence if current_chunk else sentence
test_tokens = tokenizer.tokenize(test_chunk)
if len(test_tokens) > chunk_size:
if current_chunk:
chunks.append(current_chunk.strip())
# Add overlap
if chunk_overlap > 0 and chunks:
overlap_tokens = tokenizer.tokenize(current_chunk)
if len(overlap_tokens) > chunk_overlap:
overlap_start = len(overlap_tokens) - chunk_overlap
overlap_text = tokenizer.convert_tokens_to_string(overlap_tokens[overlap_start:])
current_chunk = overlap_text + ". " + sentence
else:
current_chunk = sentence
else:
current_chunk = sentence
else:
current_chunk = sentence
else:
current_chunk = test_chunk
if current_chunk.strip():
chunks.append(current_chunk.strip())
return chunks
def process_article(topic, chunk_size, chunk_overlap):
"""Process Wikipedia article into chunks and embeddings"""
global chunks, embeddings, index, document
if not topic.strip():
return "⚠️ Please enter a topic first!", None, ""
# Load models first
load_models()
# Fetch content
document, message = get_wikipedia_content(topic)
if document is None:
return message, None, ""
# Process text
chunks = split_text(document, int(chunk_size), int(chunk_overlap))
# Create embeddings
embeddings = embedding_model.encode(chunks)
# Build FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings))
# Create summary stats
chunk_lengths = [len(chunk.split()) for chunk in chunks]
summary = f"""
πŸ“Š **Processing Summary:**
- **Total chunks**: {len(chunks)}
- **Embedding dimension**: {dimension}
- **Average chunk length**: {np.mean(chunk_lengths):.1f} words
- **Min/Max chunk length**: {min(chunk_lengths)}/{max(chunk_lengths)} words
- **Document length**: {len(document.split())} words
βœ… Ready for questions!
"""
return f"βœ… Successfully processed '{topic}' into {len(chunks)} chunks!", create_chunk_visualization(), summary
def create_chunk_visualization():
"""Create chunk length distribution plot"""
if chunks is None:
return None
chunk_lengths = [len(chunk.split()) for chunk in chunks]
fig = make_subplots(
rows=1, cols=2,
subplot_titles=("πŸ“ Chunk Length Distribution", "πŸ“Š Statistical Summary"),
specs=[[{"type": "bar"}, {"type": "box"}]]
)
# Histogram
fig.add_trace(
go.Histogram(x=chunk_lengths, nbinsx=15, name="Distribution",
marker_color="skyblue", opacity=0.7),
row=1, col=1
)
# Box plot
fig.add_trace(
go.Box(y=chunk_lengths, name="Statistics",
marker_color="lightgreen", boxmean=True),
row=1, col=2
)
fig.update_layout(height=400, showlegend=False, title="πŸ“Š Chunk Analysis")
return fig
def answer_question(question, k_retrieval):
"""Answer question using RAG pipeline"""
global chunks, embeddings, index, qa_pipeline
if chunks is None or index is None:
return "⚠️ Please process an article first!", None, "", ""
if not question.strip():
return "⚠️ Please enter a question!", None, "", ""
# Get query embedding
query_embedding = embedding_model.encode([question])
# Search
distances, indices = index.search(np.array(query_embedding), int(k_retrieval))
retrieved_chunks = [chunks[i] for i in indices[0]]
# Generate answer
context = " ".join(retrieved_chunks)
answer = qa_pipeline(question=question, context=context)
# Format results
confidence = answer['score']
# Determine confidence level
if confidence >= 0.8:
confidence_emoji = "🟒"
confidence_text = "Very High"
elif confidence >= 0.6:
confidence_emoji = "πŸ”΅"
confidence_text = "High"
elif confidence >= 0.4:
confidence_emoji = "🟑"
confidence_text = "Medium"
else:
confidence_emoji = "πŸ”΄"
confidence_text = "Low"
# Format answer
formatted_answer = f"""
πŸ€– **Answer**: {answer['answer']}
{confidence_emoji} **Confidence**: {confidence:.1%} ({confidence_text})
πŸ“ **Answer Length**: {len(answer['answer'])} characters
πŸ” **Chunks Used**: {len(retrieved_chunks)}
"""
# Format retrieved chunks
retrieved_text = "πŸ“‹ **Retrieved Context Chunks:**\n\n"
for i, chunk in enumerate(retrieved_chunks):
similarity = 1 / (1 + distances[0][i])
retrieved_text += f"**Chunk {i+1}** (Similarity: {similarity:.3f}):\n{chunk}\n\n---\n\n"
# Create similarity visualization
similarity_scores = 1 / (1 + distances[0])
similarity_plot = create_similarity_plot(similarity_scores)
return formatted_answer, similarity_plot, retrieved_text, create_confidence_gauge(confidence)
def create_similarity_plot(similarity_scores):
"""Create similarity scores bar chart"""
fig = go.Figure(data=[
go.Bar(x=[f"Rank {i+1}" for i in range(len(similarity_scores))],
y=similarity_scores,
marker_color=['gold', 'silver', '#CD7F32'][:len(similarity_scores)],
text=[f'{score:.3f}' for score in similarity_scores],
textposition='auto')
])
fig.update_layout(
title="🎯 Retrieved Chunks Similarity Scores",
xaxis_title="Retrieved Chunk Rank",
yaxis_title="Similarity Score",
height=400
)
return fig
def create_confidence_gauge(confidence):
"""Create confidence gauge visualization"""
fig = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = confidence * 100,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "🎯 Answer Confidence (%)"},
delta = {'reference': 80},
gauge = {
'axis': {'range': [None, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 20], 'color': "red"},
{'range': [20, 40], 'color': "orange"},
{'range': [40, 60], 'color': "yellow"},
{'range': [60, 80], 'color': "lightgreen"},
{'range': [80, 100], 'color': "green"}
],
'threshold': {
'line': {'color': "black", 'width': 4},
'thickness': 0.75,
'value': 90
}
}
))
fig.update_layout(height=400)
return fig
def clear_data():
"""Clear all processed data"""
global chunks, embeddings, index, document
chunks = None
embeddings = None
index = None
document = None
return "πŸ—‘οΈ Data cleared! Ready for new article.", None, "", "", None, None, ""
# Create Gradio interface optimized for Hugging Face Spaces
def create_interface():
"""Create the main Gradio interface"""
with gr.Blocks(
title="πŸ” RAG Pipeline For LLMs",
theme=gr.themes.Soft(),
) as interface:
# Header
gr.Markdown("""
# πŸ” RAG Pipeline For LLMs πŸš€
<div style="text-align: center; color: #666; margin-bottom: 2rem;">
An intelligent Q&A system powered by πŸ€— Hugging Face, πŸ“– Wikipedia, and ⚑ FAISS vector search
</div>
""")
with gr.Tab("πŸ“– Article Processing"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### πŸ“‹ Step 1: Configure & Process Article")
topic_input = gr.Textbox(
label="πŸ“– Wikipedia Topic",
placeholder="e.g., Artificial Intelligence, Climate Change, Python Programming",
info="Enter any topic available on Wikipedia"
)
with gr.Row():
chunk_size = gr.Slider(
label="πŸ“ Chunk Size (tokens)",
minimum=128,
maximum=512,
value=256,
step=32,
info="Larger chunks = more context, smaller chunks = more precision"
)
chunk_overlap = gr.Slider(
label="πŸ”— Chunk Overlap (tokens)",
minimum=10,
maximum=50,
value=20,
step=5,
info="Overlap helps maintain context between chunks"
)
process_btn = gr.Button("πŸ”„ Fetch & Process Article", variant="primary", size="lg")
processing_status = gr.Textbox(
label="πŸ“Š Processing Status",
interactive=False
)
with gr.Column(scale=1):
processing_summary = gr.Markdown("### πŸ“ˆ Processing Summary\n*Process an article to see statistics*")
chunk_plot = gr.Plot(label="πŸ“Š Chunk Analysis Visualization")
with gr.Tab("❓ Question Answering"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### 🎯 Step 2: Ask Your Question")
question_input = gr.Textbox(
label="❓ Your Question",
placeholder="e.g., What is the main concept? How does it work?",
info="Ask any question about the processed article"
)
k_retrieval = gr.Slider(
label="πŸ” Number of Chunks to Retrieve",
minimum=1,
maximum=10,
value=3,
step=1,
info="More chunks = broader context, fewer chunks = more focused"
)
answer_btn = gr.Button("🎯 Get Answer", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### πŸ’‘ Tips\n- Process an article first\n- Ask specific questions\n- Adjust retrieval count for better results")
answer_output = gr.Markdown(label="πŸ€– Generated Answer")
with gr.Row():
similarity_plot = gr.Plot(label="🎯 Similarity Scores")
confidence_gauge = gr.Plot(label="πŸ“Š Confidence Meter")
with gr.Tab("πŸ“‹ Retrieved Context"):
retrieved_chunks = gr.Markdown(
label="πŸ“„ Retrieved Chunks",
value="*Ask a question to see retrieved context chunks*"
)
# Event handlers
process_btn.click(
fn=process_article,
inputs=[topic_input, chunk_size, chunk_overlap],
outputs=[processing_status, chunk_plot, processing_summary]
)
answer_btn.click(
fn=answer_question,
inputs=[question_input, k_retrieval],
outputs=[answer_output, similarity_plot, retrieved_chunks, confidence_gauge]
)
# Footer
gr.Markdown("""
---
<div style="text-align: center; color: #666; padding: 1rem;">
πŸ” RAG Pipeline Demo | Built with ❀️ using Gradio, Hugging Face, and FAISS<br>
πŸ€— Models: sentence-transformers/all-mpnet-base-v2 | deepset/roberta-base-squad2
</div>
""")
return interface
# Launch the app for Hugging Face Spaces
if __name__ == "__main__":
interface = create_interface()
interface.launch()