Spaces:
Build error
Build error
| import numpy as np | |
| from scipy import linalg | |
| import torch | |
| def calculate_mpjpe(gt_joints, pred_joints): | |
| """ | |
| gt_joints: num_poses x num_joints(22) x 3 | |
| pred_joints: num_poses x num_joints(22) x 3 | |
| (obtained from recover_from_ric()) | |
| """ | |
| assert gt_joints.shape == pred_joints.shape, f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}" | |
| # Align by root (pelvis) | |
| pelvis = gt_joints[:, [0]].mean(1) | |
| gt_joints = gt_joints - torch.unsqueeze(pelvis, dim=1) | |
| pelvis = pred_joints[:, [0]].mean(1) | |
| pred_joints = pred_joints - torch.unsqueeze(pelvis, dim=1) | |
| # Compute MPJPE | |
| mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints=22 | |
| mpjpe_seq = mpjpe.mean(-1) # num_poses | |
| return mpjpe_seq | |
| # (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train | |
| def euclidean_distance_matrix(matrix1, matrix2): | |
| """ | |
| Params: | |
| -- matrix1: N1 x D | |
| -- matrix2: N2 x D | |
| Returns: | |
| -- dist: N1 x N2 | |
| dist[i, j] == distance(matrix1[i], matrix2[j]) | |
| """ | |
| assert matrix1.shape[1] == matrix2.shape[1] | |
| d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train) | |
| d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1) | |
| d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, ) | |
| dists = np.sqrt(d1 + d2 + d3) # broadcasting | |
| return dists | |
| def calculate_top_k(mat, top_k): | |
| size = mat.shape[0] | |
| gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1) | |
| bool_mat = (mat == gt_mat) | |
| correct_vec = False | |
| top_k_list = [] | |
| for i in range(top_k): | |
| # print(correct_vec, bool_mat[:, i]) | |
| correct_vec = (correct_vec | bool_mat[:, i]) | |
| # print(correct_vec) | |
| top_k_list.append(correct_vec[:, None]) | |
| top_k_mat = np.concatenate(top_k_list, axis=1) | |
| return top_k_mat | |
| def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False): | |
| dist_mat = euclidean_distance_matrix(embedding1, embedding2) | |
| argmax = np.argsort(dist_mat, axis=1) | |
| top_k_mat = calculate_top_k(argmax, top_k) | |
| if sum_all: | |
| return top_k_mat.sum(axis=0) | |
| else: | |
| return top_k_mat | |
| def calculate_matching_score(embedding1, embedding2, sum_all=False): | |
| assert len(embedding1.shape) == 2 | |
| assert embedding1.shape[0] == embedding2.shape[0] | |
| assert embedding1.shape[1] == embedding2.shape[1] | |
| dist = linalg.norm(embedding1 - embedding2, axis=1) | |
| if sum_all: | |
| return dist.sum(axis=0) | |
| else: | |
| return dist | |
| def calculate_activation_statistics(activations): | |
| """ | |
| Params: | |
| -- activation: num_samples x dim_feat | |
| Returns: | |
| -- mu: dim_feat | |
| -- sigma: dim_feat x dim_feat | |
| """ | |
| mu = np.mean(activations, axis=0) | |
| cov = np.cov(activations, rowvar=False) | |
| return mu, cov | |
| def calculate_diversity(activation, diversity_times): | |
| assert len(activation.shape) == 2 | |
| assert activation.shape[0] > diversity_times | |
| num_samples = activation.shape[0] | |
| first_indices = np.random.choice(num_samples, diversity_times, replace=False) | |
| second_indices = np.random.choice(num_samples, diversity_times, replace=False) | |
| dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1) | |
| return dist.mean() | |
| def calculate_multimodality(activation, multimodality_times): | |
| assert len(activation.shape) == 3 | |
| assert activation.shape[1] > multimodality_times | |
| num_per_sent = activation.shape[1] | |
| first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) | |
| second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) | |
| dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2) | |
| return dist.mean() | |
| def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
| """Numpy implementation of the Frechet Distance. | |
| The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
| and X_2 ~ N(mu_2, C_2) is | |
| d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
| Stable version by Dougal J. Sutherland. | |
| Params: | |
| -- mu1 : Numpy array containing the activations of a layer of the | |
| inception net (like returned by the function 'get_predictions') | |
| for generated samples. | |
| -- mu2 : The sample mean over activations, precalculated on an | |
| representative data set. | |
| -- sigma1: The covariance matrix over activations for generated samples. | |
| -- sigma2: The covariance matrix over activations, precalculated on an | |
| representative data set. | |
| Returns: | |
| -- : The Frechet Distance. | |
| """ | |
| mu1 = np.atleast_1d(mu1) | |
| mu2 = np.atleast_1d(mu2) | |
| sigma1 = np.atleast_2d(sigma1) | |
| sigma2 = np.atleast_2d(sigma2) | |
| assert mu1.shape == mu2.shape, \ | |
| 'Training and test mean vectors have different lengths' | |
| assert sigma1.shape == sigma2.shape, \ | |
| 'Training and test covariances have different dimensions' | |
| diff = mu1 - mu2 | |
| # Product might be almost singular | |
| covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
| if not np.isfinite(covmean).all(): | |
| msg = ('fid calculation produces singular product; ' | |
| 'adding %s to diagonal of cov estimates') % eps | |
| print(msg) | |
| offset = np.eye(sigma1.shape[0]) * eps | |
| covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
| # Numerical error might give slight imaginary component | |
| if np.iscomplexobj(covmean): | |
| if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
| m = np.max(np.abs(covmean.imag)) | |
| raise ValueError('Imaginary component {}'.format(m)) | |
| covmean = covmean.real | |
| tr_covmean = np.trace(covmean) | |
| return (diff.dot(diff) + np.trace(sigma1) + | |
| np.trace(sigma2) - 2 * tr_covmean) | |