MaziyarPanahi commited on
Commit
23d64a1
·
1 Parent(s): 6d9eef2

let's add the tsv file

Browse files
Files changed (2) hide show
  1. FACTS.tsv +35 -0
  2. app.py +6 -13
FACTS.tsv ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model size Separate Grounding Score Separate Quality Score Combined Score
2
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-14B 14 0.817797 0.542373 0.457627
3
+ VIDraft/Gemma-3-R1984-27B 27 0.93617 0.459574 0.434043
4
+ meta-llama/Llama-3.3-70B-Instruct 70 0.842553 0.510638 0.425532
5
+ Qwen/Qwen3-30B-A3B 30 0.812766 0.540426 0.425532
6
+ Qwen/Qwen3-4B 4 0.770213 0.540426 0.425532
7
+ google/medgemma-27b-text-it 27 0.940678 0.440678 0.419492
8
+ Qwen/Qwen3-32B 32 0.740426 0.553191 0.417021
9
+ deepseek-ai/DeepSeek-R1-0528-Qwen3-8B 8 0.834746 0.478814 0.411017
10
+ deepseek-ai/DeepSeek-R1-Distill-Llama-8B 8 0.766949 0.516949 0.40678
11
+ Qwen/Qwen3-8B 8 0.748936 0.523404 0.4
12
+ Qwen/Qwen3-14B 14 0.778723 0.502128 0.382979
13
+ google/gemma-3-27b-it 27 0.936 0.391 0.378
14
+ google/medgemma-4b-it 4 0.834746 0.423729 0.377119
15
+ Qwen/Qwen2.5-VL-32B-Instruct 32 0.621277 0.570213 0.357447
16
+ meta-llama/Llama-3.1-70B-Instruct 70 0.855932 0.389831 0.334746
17
+ google/gemma-3-12b-it 12 0.944 0.343 0.313
18
+ google/gemma-3-4b-it 4 0.9 0.33 0.3
19
+ Qwen/Qwen3-1.7B 1.7 0.702128 0.451064 0.297872
20
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 7 0.59322 0.449153 0.275424
21
+ Qwen/Qwen3-0.6B 0.6 0.682203 0.330508 0.266949
22
+ Qwen/Qwen2.5-7B-Instruct 7 0.731915 0.310638 0.255319
23
+ Qwen/Qwen2.5-14B-Instruct-1M 14 0.70339 0.300847 0.254237
24
+ nvidia/Llama-Nemotron-Nano-8B 8 0.576271 0.402542 0.241525
25
+ OpenScholar/Llama-3.1-OpenScholar-8B 8 0.690678 0.283898 0.241525
26
+ Qwen/Qwen2.5-7B-Instruct-1M 7 0.737288 0.271186 0.207627
27
+ nvidia/Llama-Nemotron-Nano-4B-v1.1 4 0.548936 0.340426 0.2
28
+ google/gemma-3-1b-it 1 0.65 0.28 0.19
29
+ mistralai/Ministral-8B-Instruct-2410 8 0.94 0.184 0.175
30
+ meta-llama/Llama-3.1-8B-Instruct 8 0.665254 0.194915 0.169492
31
+ mistralai/Mistral-Small-3.1-24B-Instruct-2503 24 0.953191 0.165957 0.157447
32
+ mistralai/Mistral-Small-24B-Instruct-2501 24 0.95339 0.135593 0.131356
33
+ open-thoughts/OpenThinker-7B 7 0.478814 0.152542 0.110169
34
+ PleIAs/Pleias-RAG-350M 0.35 0.236264 0.021978 0.010989
35
+ PleIAs/Pleias-RAG-1B 1 0.190476 0.037037 0
app.py CHANGED
@@ -1,23 +1,16 @@
1
  import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
- import requests
5
  from io import StringIO
6
  import os
7
 
8
- dropbox_url = os.getenv("FACTS_RES_URL")
9
-
10
  try:
11
- # Download the TSV file
12
- response = requests.get(dropbox_url)
13
- response.raise_for_status() # Raise an exception for bad status codes
14
-
15
- # Read the TSV data
16
- df = pd.read_csv(StringIO(response.text), sep='\t')
17
- print(f"Successfully loaded {len(df)} models from Dropbox")
18
  except Exception as e:
19
- print(f"Error loading data from Dropbox: {e}")
20
- # Show sample data when download fails
21
  df = pd.DataFrame({
22
  'model': [
23
  'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B',
@@ -30,7 +23,7 @@ except Exception as e:
30
  'Separate Quality Score': [0.542373, 0.510638, 0.540426, 0.391],
31
  'Combined Score': [0.457627, 0.425532, 0.425532, 0.378]
32
  })
33
- print("Showing sample data (download failed)")
34
 
35
  # Clean up the data
36
  df = df.dropna() # Remove any rows with missing values
 
1
  import gradio as gr
2
  import pandas as pd
3
  import numpy as np
 
4
  from io import StringIO
5
  import os
6
 
 
 
7
  try:
8
+ # Read the local TSV file
9
+ df = pd.read_csv("FACTS.tsv", sep='\t')
10
+ print(f"Successfully loaded {len(df)} models from local file")
 
 
 
 
11
  except Exception as e:
12
+ print(f"Error loading data from local file: {e}")
13
+ # Show sample data when file reading fails
14
  df = pd.DataFrame({
15
  'model': [
16
  'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B',
 
23
  'Separate Quality Score': [0.542373, 0.510638, 0.540426, 0.391],
24
  'Combined Score': [0.457627, 0.425532, 0.425532, 0.378]
25
  })
26
+ print("Showing sample data (file read failed)")
27
 
28
  # Clean up the data
29
  df = df.dropna() # Remove any rows with missing values