Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,115 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
title="AIC-transformer-2023", # Title for your interface
|
19 |
-
description="Description", # Description for users
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio.themes.base import Base
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
|
8 |
+
# Load the models
|
9 |
+
caption_model = VisionEncoderDecoderModel.from_pretrained('Mayada/AIC-transformer') # Your model on Hugging Face
|
10 |
+
caption_tokenizer = AutoTokenizer.from_pretrained('aubmindlab/bert-base-arabertv02')
|
11 |
+
question_model = AutoModelForSeq2SeqLM.from_pretrained("Mihakram/AraT5-base-question-generation")
|
12 |
+
question_tokenizer = AutoTokenizer.from_pretrained("Mihakram/AraT5-base-question-generation")
|
13 |
+
|
14 |
+
# Define the normalization and transformations
|
15 |
+
normalize = transforms.Normalize(
|
16 |
+
mean=[0.485, 0.456, 0.406], # ImageNet mean
|
17 |
+
std=[0.229, 0.224, 0.225] # ImageNet standard deviation
|
|
|
|
|
18 |
)
|
19 |
|
20 |
+
inference_transforms = transforms.Compose([
|
21 |
+
transforms.Resize((224, 224)),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
normalize
|
24 |
+
])
|
25 |
+
|
26 |
+
# Load the dictionary (use it from your Hugging Face Space or include in the repo)
|
27 |
+
dictionary = {
|
28 |
+
"caption": "alternative_caption" # Replace with your actual dictionary
|
29 |
+
}
|
30 |
+
|
31 |
+
# Function to correct words in the caption using the dictionary
|
32 |
+
def correct_caption(caption):
|
33 |
+
corrected_words = [dictionary.get(word, word) for word in caption.split()]
|
34 |
+
corrected_caption = " ".join(corrected_words)
|
35 |
+
return corrected_caption
|
36 |
+
|
37 |
+
# Function to generate captions for an image
|
38 |
+
def generate_captions(image):
|
39 |
+
img_tensor = inference_transforms(image).unsqueeze(0)
|
40 |
+
generated = caption_model.generate(
|
41 |
+
img_tensor,
|
42 |
+
num_beams=3,
|
43 |
+
max_length=10,
|
44 |
+
early_stopping=True,
|
45 |
+
do_sample=True,
|
46 |
+
top_k=1000,
|
47 |
+
num_return_sequences=1,
|
48 |
+
)
|
49 |
+
captions = [caption_tokenizer.decode(g, skip_special_tokens=True).strip() for g in generated]
|
50 |
+
return captions
|
51 |
+
|
52 |
+
# Function to generate questions given a context and answer
|
53 |
+
def generate_questions(context, answer):
|
54 |
+
text = "context: " + context + " " + "answer: " + answer + " </s>"
|
55 |
+
text_encoding = question_tokenizer.encode_plus(
|
56 |
+
text, return_tensors="pt"
|
57 |
+
)
|
58 |
+
question_model.eval()
|
59 |
+
generated_ids = question_model.generate(
|
60 |
+
input_ids=text_encoding['input_ids'],
|
61 |
+
attention_mask=text_encoding['attention_mask'],
|
62 |
+
max_length=64,
|
63 |
+
num_beams=5,
|
64 |
+
num_return_sequences=1
|
65 |
+
)
|
66 |
+
questions = [question_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(
|
67 |
+
'question: ', ' ') for g in generated_ids]
|
68 |
+
return questions
|
69 |
+
|
70 |
+
# Gradio Interface Function
|
71 |
+
def caption_question_interface(image):
|
72 |
+
captions = generate_captions(image)
|
73 |
+
corrected_captions = [correct_caption(caption) for caption in captions]
|
74 |
+
questions_with_answers = []
|
75 |
+
|
76 |
+
for caption in corrected_captions:
|
77 |
+
words = caption.split()
|
78 |
+
if len(words) > 0:
|
79 |
+
answer = words[0]
|
80 |
+
question = generate_questions(caption, answer)
|
81 |
+
questions_with_answers.extend([(q, answer) for q in question])
|
82 |
+
if len(words) > 1:
|
83 |
+
answer = words[1]
|
84 |
+
question = generate_questions(caption, answer)
|
85 |
+
questions_with_answers.extend([(q, answer) for q in question])
|
86 |
+
if len(words) > 1:
|
87 |
+
answer = " ".join(words[:2])
|
88 |
+
question = generate_questions(caption, answer)
|
89 |
+
questions_with_answers.extend([(q, answer) for q in question])
|
90 |
+
if len(words) > 2:
|
91 |
+
answer = words[2]
|
92 |
+
question = generate_questions(caption, answer)
|
93 |
+
questions_with_answers.extend([(q, answer) for q in question])
|
94 |
+
if len(words) > 3:
|
95 |
+
answer = words[3]
|
96 |
+
question = generate_questions(caption, answer)
|
97 |
+
questions_with_answers.extend([(q, answer) for q in question])
|
98 |
+
|
99 |
+
formatted_questions = [f"Question: {q}\nAnswer: {a}" for q, a in questions_with_answers]
|
100 |
+
formatted_questions = "\n".join(formatted_questions)
|
101 |
+
|
102 |
+
return "\n".join(corrected_captions), formatted_questions
|
103 |
+
|
104 |
+
gr_interface = gr.Interface(
|
105 |
+
fn=caption_question_interface,
|
106 |
+
inputs=gr.inputs.Image(type="pil", label="Input Image"),
|
107 |
+
outputs=[
|
108 |
+
gr.outputs.Textbox(label="Generated Captions"),
|
109 |
+
gr.outputs.Textbox(label="Generated Questions and Answers")
|
110 |
+
],
|
111 |
+
title="Image Captioning and Question Generation",
|
112 |
+
description="Generate captions and questions for images using pre-trained models."
|
113 |
+
)
|
114 |
|
115 |
+
gr_interface.launch()
|