Yebulabula commited on
Commit
4016bec
·
1 Parent(s): 6c8c05f

complete_demo_app

Browse files
Files changed (3) hide show
  1. app.py +345 -0
  2. assets/scene0073_00.safetensors +3 -0
  3. requirements.txt +19 -0
app.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import os, glob, re, torch, numpy as np
5
+ from typing import List, Tuple
6
+ from safetensors.torch import load_file
7
+ import gradio as gr
8
+ import plotly.graph_objects as go
9
+ import torch.nn as nn
10
+ from huggingface_hub import hf_hub_download, list_repo_files
11
+
12
+ # =========================
13
+ # Config
14
+ # =========================
15
+ LOCAL_FILE_DEFAULT = "assets/scene0073_00.safetensors" # local safetensors file
16
+ PM_KEY_DEFAULT = "point_map"
17
+ TOPK_VIEWS_DEFAULT = 3
18
+
19
+ VOXEL_SIZE = 0.02
20
+ DOWNSAMPLE_N_MAX = 600_000
21
+ POINT_SIZE_MIN = 1.2
22
+ POINT_SIZE_MAX = 2.0
23
+
24
+ CLR_RED = "rgba(230,40,40,0.98)"
25
+ BG_COLOR = "#f7f9fb"
26
+ GRID_COLOR = "#e6ecf2"
27
+ BOX_COLOR = "rgba(80,80,80,0.6)"
28
+
29
+ TOP_VIEW_IMAGE_PATH = "assets/scene0073_00.png"
30
+
31
+ DEFAULT_CAM = dict(
32
+ eye=dict(x=1.35, y=1.35, z=0.95),
33
+ up=dict(x=0, y=0, z=1),
34
+ center=dict(x=0, y=0, z=0),
35
+ projection=dict(type="perspective"),
36
+ )
37
+
38
+ def _merge_safetensors_dicts(paths: List[str]):
39
+ merged = {}
40
+ for p in paths:
41
+ sd = load_file(p, device="cpu")
42
+ merged.update(sd)
43
+ return merged
44
+
45
+ def _local_all_under(path: str) -> List[str]:
46
+ out = []
47
+ if os.path.isfile(path):
48
+ return [path]
49
+ for root, _, files in os.walk(path):
50
+ for f in files:
51
+ out.append(os.path.join(root, f))
52
+ return sorted(out)
53
+
54
+ # =========================
55
+ # Load pretrained (your existing loader)
56
+ # =========================
57
+ def load_pretrain(
58
+ model: torch.nn.Module,
59
+ ckpt_path: str, # e.g. "assets/ckpt_100.pth" or "assets/model.safetensors"
60
+ repo_id: str = "MatchLab/poma3d-demo",
61
+ revision: str = "main",
62
+ allow_local_fallback: bool = True,
63
+ ):
64
+ if allow_local_fallback and (os.path.isfile(ckpt_path) or os.path.isdir(ckpt_path)):
65
+ print(f"📂 Using local checkpoint(s): {ckpt_path}")
66
+ local_files = _local_all_under(ckpt_path)
67
+ else:
68
+ # 2) REMOTE: resolve file list from Space
69
+ print(f"📦 Resolving from HF Space: {repo_id}/{ckpt_path} (rev={revision})")
70
+ files = list_repo_files(repo_id=repo_id, repo_type='model', revision=revision)
71
+
72
+ # Exact file hit?
73
+ if ckpt_path in files:
74
+ to_fetch = [ckpt_path]
75
+ else:
76
+ # Treat ckpt_path as a folder prefix (ensure trailing slash for matching)
77
+ prefix = ckpt_path if ckpt_path.endswith("/") else ckpt_path + "/"
78
+ to_fetch = [f for f in files if f.startswith(prefix)]
79
+ if not to_fetch:
80
+ preview = "\n".join(files[:100])
81
+ raise FileNotFoundError(
82
+ f"'{ckpt_path}' not found in Space '{repo_id}' (rev='{revision}').\n"
83
+ f"Files present (first 100):\n{preview}"
84
+ )
85
+
86
+ # Download all matching files locally
87
+ local_files = []
88
+ for rel in to_fetch:
89
+ lp = hf_hub_download(repo_id=repo_id, filename=rel, repo_type='model', revision=revision)
90
+ local_files.append(lp)
91
+ local_files.sort()
92
+
93
+ # Filter by types we know how to load
94
+ safes = [p for p in local_files if p.endswith(".safetensors")]
95
+ pths = [p for p in local_files if re.search(r"\.(?:pth|pt)$", p)]
96
+
97
+ if safes:
98
+ print(f"🧩 Found {len(safes)} .safetensors shard(s); merging…")
99
+ state = _merge_safetensors_dicts(safes)
100
+ elif pths:
101
+ # pick the largest .pth/.pt to avoid optimizer/state variants
102
+ pths_sorted = sorted(pths, key=lambda p: os.path.getsize(p), reverse=True)
103
+ pick = pths_sorted[0]
104
+ print(f"🧩 Using .pth/.pt: {os.path.basename(pick)} (largest of {len(pths)} candidates)")
105
+ state = torch.load(pick, map_location="cpu")
106
+ # strip common prefixes
107
+ if isinstance(state, dict) and any(k.startswith(("model.", "target_model.")) for k in state.keys()):
108
+ state = { (k.split(".", 1)[1] if k.startswith(("model.", "target_model.")) else k): v
109
+ for k, v in state.items() }
110
+ # nested 'state_dict'
111
+ if isinstance(state, dict) and "state_dict" in state and isinstance(state["state_dict"], dict):
112
+ state = state["state_dict"]
113
+ else:
114
+ raise FileNotFoundError(
115
+ "No loadable checkpoint found. Expecting one or more of: "
116
+ ".safetensors or .pth/.pt under the given path."
117
+ )
118
+
119
+ # Load into model
120
+ result = model.load_state_dict(state, strict=False)
121
+
122
+ # Report
123
+ weight_keys = set(state.keys()) if isinstance(state, dict) else set()
124
+ model_keys = set(model.state_dict().keys())
125
+ loaded_keys = model_keys.intersection(weight_keys)
126
+ print("✅ Weights loaded")
127
+ print(f" • Loaded keys: {len(loaded_keys)}")
128
+ print(f" • Missing keys: {len(result.missing_keys)}")
129
+ print(f" • Unexpected keys: {len(result.unexpected_keys)}")
130
+
131
+ return result
132
+ # =========================
133
+ # Representation model (fg-clip-base + LoRA)
134
+ # =========================
135
+ def build_model(device: torch.device):
136
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
137
+ from peft import LoraConfig, get_peft_model
138
+
139
+ class RepModel(torch.nn.Module):
140
+ def __init__(self, model_root="qihoo360/fg-clip-base"):
141
+ super().__init__()
142
+ lora_cfg = LoraConfig(
143
+ r=32, lora_alpha=64,
144
+ target_modules=["q_proj","k_proj","v_proj","fc1","fc2"],
145
+ lora_dropout=0.05, bias="none",
146
+ task_type="FEATURE_EXTRACTION"
147
+ )
148
+ cfg = AutoConfig.from_pretrained(model_root, trust_remote_code=True)
149
+ base = AutoModelForCausalLM.from_config(cfg, trust_remote_code=True)
150
+ self.target_model = get_peft_model(base, lora_cfg)
151
+ self.tokenizer = AutoTokenizer.from_pretrained(model_root, trust_remote_code=True, use_fast=True)
152
+
153
+ @torch.no_grad()
154
+ def get_text_feature(self, texts, device):
155
+ tok = self.tokenizer(texts, padding="max_length", truncation=True, max_length=248, return_tensors="pt").to(device)
156
+ feats = self.target_model.get_text_features(tok["input_ids"], walk_short_pos=False)
157
+ feats = torch.nn.functional.normalize(feats.float(), dim=-1)
158
+ return feats
159
+
160
+ @torch.no_grad()
161
+ def get_image_feature(self, pm_batched):
162
+ feats = self.target_model.get_image_features(pm_batched)
163
+ feats = torch.nn.functional.normalize(feats.float(), dim=-1)
164
+ return feats
165
+
166
+ m = RepModel().to(device).eval()
167
+ print("Using fg-clip-base RepModel.")
168
+ return m
169
+
170
+ # =========================
171
+ # Data loading & helpers
172
+ # =========================
173
+ def load_scene_local(path: str, pm_key: str = PM_KEY_DEFAULT) -> torch.Tensor:
174
+ if not os.path.exists(path):
175
+ raise FileNotFoundError(f"Local file not found: {path}")
176
+ sd = load_file(path)
177
+ if pm_key not in sd:
178
+ raise KeyError(f"Key '{pm_key}' not found in {list(sd.keys())}")
179
+ pm = sd[pm_key] # (V,H,W,3)
180
+ if pm.dim() != 4 or pm.shape[-1] != 3:
181
+ raise ValueError(f"Invalid shape {tuple(pm.shape)}, expected (V,H,W,3)")
182
+ return pm.permute(0, 3, 1, 2).contiguous() # -> (V,3,H,W)
183
+
184
+ def _xyz_to_numpy(xyz: torch.Tensor) -> np.ndarray:
185
+ pts = xyz.permute(1, 2, 0).reshape(-1, 3).cpu().numpy().astype(np.float32)
186
+ mask = np.isfinite(pts).all(axis=1)
187
+ return pts[mask]
188
+
189
+ def stack_views(pm: torch.Tensor) -> Tuple[np.ndarray, np.ndarray]:
190
+ pts_all, vid_all = [], []
191
+ for v in range(pm.shape[0]):
192
+ pts = _xyz_to_numpy(pm[v])
193
+ if pts.size == 0: continue
194
+ pts_all.append(pts)
195
+ vid_all.append(np.full((pts.shape[0],), v, dtype=np.int32))
196
+ pts_all = np.concatenate(pts_all, axis=0)
197
+ vid_all = np.concatenate(vid_all, axis=0)
198
+ return pts_all, vid_all
199
+
200
+ def voxel_downsample_with_ids(pts, vids, voxel: float):
201
+ if pts.shape[0] == 0: return pts, vids
202
+ grid = np.floor(pts / voxel).astype(np.int64)
203
+ key = np.core.records.fromarrays(grid.T, names="x,y,z", formats="i8,i8,i8")
204
+ _, uniq_idx = np.unique(key, return_index=True)
205
+ return pts[uniq_idx], vids[uniq_idx]
206
+
207
+ def hard_cap(pts, vids, cap: int):
208
+ N = pts.shape[0]
209
+ if N <= cap: return pts, vids
210
+ idx = np.random.choice(N, size=cap, replace=False)
211
+ return pts[idx], vids[idx]
212
+
213
+ def adaptive_point_size(n: int) -> float:
214
+ ps = 2.4 * (150_000 / max(n, 10)) ** 0.25
215
+ return float(np.clip(ps, POINT_SIZE_MIN, POINT_SIZE_MAX))
216
+
217
+ def scene_bbox(pts: np.ndarray):
218
+ mn, mx = pts.min(axis=0), pts.max(axis=0)
219
+ x0,y0,z0 = mn; x1,y1,z1 = mx
220
+ corners = np.array([
221
+ [x0,y0,z0],[x1,y0,z0],[x1,y1,z0],[x0,y1,z0],
222
+ [x0,y0,z1],[x1,y0,z1],[x1,y1,z1],[x0,y1,z1]
223
+ ])
224
+ edges = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(6,7),(7,4),(0,4),(1,5),(2,6),(3,7)]
225
+ xs,ys,zs=[],[],[]
226
+ for a,b in edges:
227
+ xs += [corners[a,0], corners[b,0], None]
228
+ ys += [corners[a,1], corners[b,1], None]
229
+ zs += [corners[a,2], corners[b,2], None]
230
+ return xs,ys,zs
231
+
232
+ @torch.no_grad()
233
+ def rank_views_for_text(model, text, pm, device, topk: int):
234
+ img_feats = model.get_image_feature(pm.float().to(device))
235
+ txt_feat = model.get_text_feature([text], device=device)[0]
236
+ sims = torch.matmul(img_feats, txt_feat)
237
+ order = torch.argsort(sims, descending=True)[:max(1, int(topk))]
238
+ return order.tolist()
239
+
240
+ # =========================
241
+ # Visualization
242
+ # =========================
243
+ def depth_values(pts: np.ndarray) -> np.ndarray:
244
+ z = pts[:, 2]
245
+ z_min, z_max = z.min(), z.max()
246
+ return (z - z_min) / (z_max - z_min + 1e-9)
247
+
248
+ def base_figure_gray_depth(pts: np.ndarray, point_size: float, camera=DEFAULT_CAM) -> go.Figure:
249
+ depth = depth_values(pts)
250
+ fig = go.Figure(go.Scatter3d(
251
+ x=pts[:,0], y=pts[:,1], z=pts[:,2],
252
+ mode="markers",
253
+ marker=dict(size=point_size, color=depth, colorscale="Greys", reversescale=True, opacity=0.50),
254
+ hoverinfo="skip"
255
+ ))
256
+ bx,by,bz = scene_bbox(pts)
257
+ fig.add_trace(go.Scatter3d(x=bx,y=by,z=bz,mode="lines",line=dict(color=BOX_COLOR,width=2),hoverinfo="skip"))
258
+ fig.update_layout(scene=dict(aspectmode="data",camera=camera),
259
+ margin=dict(l=0,r=0,b=0,t=0),
260
+ paper_bgcolor=BG_COLOR,
261
+ showlegend=False)
262
+ return fig
263
+
264
+ def highlight_views_3d(pts, view_ids, selected, point_size, camera=DEFAULT_CAM):
265
+ depth = depth_values(pts)
266
+ colors = np.stack([depth, depth, depth], axis=1)
267
+ if selected:
268
+ sel_mask = np.isin(view_ids, np.array(selected, dtype=np.int32))
269
+ colors[sel_mask] = np.array([1, 0, 0])
270
+ fig = go.Figure(go.Scatter3d(
271
+ x=pts[:,0], y=pts[:,1], z=pts[:,2],
272
+ mode="markers",
273
+ marker=dict(size=point_size,
274
+ color=[f"rgb({int(r*255)},{int(g*255)},{int(b*255)})"
275
+ for r,g,b in colors],
276
+ opacity=0.98),
277
+ hoverinfo="skip"
278
+ ))
279
+ bx,by,bz = scene_bbox(pts)
280
+ fig.add_trace(go.Scatter3d(x=bx,y=by,z=bz,mode="lines",
281
+ line=dict(color=BOX_COLOR,width=2),hoverinfo="skip"))
282
+ fig.update_layout(scene=dict(aspectmode="data",camera=camera),
283
+ margin=dict(l=0,r=0,b=0,t=0),
284
+ paper_bgcolor=BG_COLOR,
285
+ showlegend=False)
286
+ return fig
287
+
288
+ # =========================
289
+ # App setup
290
+ # =========================
291
+ device = 'cpu'
292
+ model = build_model(device)
293
+ load_pretrain(model, "assets/ckpt_100.pth")
294
+
295
+ with gr.Blocks(
296
+ title="POMA-3D: Text-conditioned 3D Scene Visualization",
297
+ css="#plot3d, #img_ref {height: 450px !important;}"
298
+ ) as demo:
299
+ gr.Markdown("### POMA-3D: The Point Map Way to 3D Scene Understanding - Embodied Localization Demo\n"
300
+ "Enter agent's situation text and choose **Top-K**; the most relevant views will turn **red**.")
301
+
302
+ with gr.Row():
303
+ text_in = gr.Textbox(label="Text query", value="I am sleeping on the bed.", scale=4)
304
+ topk_in = gr.Number(label="Top-K views", value=TOPK_VIEWS_DEFAULT, precision=0, minimum=1, maximum=12)
305
+ submit_btn = gr.Button("Locate", variant="primary")
306
+
307
+ with gr.Row(equal_height=True):
308
+ with gr.Column(scale=1, min_width=500):
309
+ plot3d = gr.Plot(label="3D Point Cloud (rotatable)", elem_id="plot3d")
310
+ with gr.Column(scale=1, min_width=500):
311
+ img_ref = gr.Image(label="Top-Down Reference View", value=TOP_VIEW_IMAGE_PATH, elem_id="img_ref")
312
+
313
+ status = gr.Markdown()
314
+
315
+ pm_state = gr.State(None)
316
+ pts_state = gr.State(None)
317
+ vids_state = gr.State(None)
318
+
319
+ # Load scene automatically from LOCAL_FILE_DEFAULT
320
+ def on_load():
321
+ pm = load_scene_local(LOCAL_FILE_DEFAULT)
322
+ pts_all, vids_all = stack_views(pm)
323
+ pts_vx, vids_vx = voxel_downsample_with_ids(pts_all, vids_all, VOXEL_SIZE)
324
+ pts_vx, vids_vx = hard_cap(pts_vx, vids_vx, DOWNSAMPLE_N_MAX)
325
+ ps = adaptive_point_size(pts_vx.shape[0])
326
+ fig3d = base_figure_gray_depth(pts_vx, ps, camera=DEFAULT_CAM)
327
+ msg = f"✅ Loaded {os.path.basename(LOCAL_FILE_DEFAULT)} | Views: {pm.shape[0]} | Points: {pts_vx.shape[0]:,}"
328
+ return fig3d, TOP_VIEW_IMAGE_PATH, msg, pm, pts_vx, vids_vx
329
+
330
+ def on_submit(text, topk, pm, pts_vx, vids_vx):
331
+ if pm is None:
332
+ return gr.update(), TOP_VIEW_IMAGE_PATH, "⚠️ Scene not loaded yet."
333
+ k = int(max(1, min(12, int(topk)))) if topk else TOPK_VIEWS_DEFAULT
334
+ top_views = rank_views_for_text(model, text, pm, device, topk=k)
335
+ ps = adaptive_point_size(pts_vx.shape[0])
336
+ fig = highlight_views_3d(pts_vx, vids_vx, top_views, ps, camera=DEFAULT_CAM)
337
+ msg = f"Highlighted views (top-{k}): {top_views}"
338
+ return fig, TOP_VIEW_IMAGE_PATH, msg
339
+
340
+ demo.load(on_load, inputs=[], outputs=[plot3d, img_ref, status, pm_state, pts_state, vids_state])
341
+ submit_btn.click(on_submit, inputs=[text_in, topk_in, pm_state, pts_state, vids_state],
342
+ outputs=[plot3d, img_ref, status])
343
+
344
+ if __name__ == "__main__":
345
+ demo.launch()
assets/scene0073_00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f99163e32be5d157c264a54d35b2514b57377713150c2da5fd1dd71eb4ad957
3
+ size 169390352
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- Core runtime ---
2
+ numpy>=1.24,<2.3
3
+ torch==2.2.2
4
+ safetensors>=0.4.3
5
+
6
+ # --- Hugging Face stack (compatible pins) ---
7
+ transformers==4.44.2
8
+ huggingface_hub==0.24.6
9
+ accelerate>=0.33.0
10
+ peft==0.12.0
11
+ sentencepiece>=0.1.99
12
+ protobuf>=4.25.0
13
+
14
+ # --- App / UI ---
15
+ gradio==4.44.0
16
+ plotly>=5.22.0
17
+
18
+ # --- Nice-to-have for many HF vision/text models ---
19
+ timm>=0.9.16