Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator | |
| # Load the handwritten math dataset | |
| ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:1000]") | |
| processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
| def preprocess(ex): | |
| img = ex["image"].convert("RGB") | |
| inputs = processor(images=img, return_tensors="pt") | |
| labels = processor.tokenizer(ex["label"], truncation=True, padding="max_length", max_length=128).input_ids | |
| ex["pixel_values"] = inputs.pixel_values[0] | |
| ex["labels"] = labels | |
| return ex | |
| ds = ds.map(preprocess, remove_columns=["image", "label"]) | |
| model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
| model.config.decoder_start_token_id = processor.tokenizer.cls_token_id | |
| model.config.pad_token_id = processor.tokenizer.pad_token_id | |
| training_args = Seq2SeqTrainingArguments( | |
| output_dir="trained_model", | |
| per_device_train_batch_size=2, | |
| num_train_epochs=1, | |
| learning_rate=5e-5, | |
| logging_steps=10, | |
| save_steps=500, | |
| fp16=False, | |
| push_to_hub=False, | |
| ) | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=ds, | |
| tokenizer=processor.tokenizer, | |
| data_collator=default_data_collator, | |
| ) | |
| trainer.train() | |
| model.save_pretrained("trained_model") | |
| processor.save_pretrained("trained_model") | |