File size: 1,740 Bytes
4b15e92
838fbb0
 
c39dec4
4b15e92
 
838fbb0
 
 
 
 
 
 
4b15e92
838fbb0
 
 
 
 
 
b638306
838fbb0
364c237
a67d0d4
b638306
838fbb0
4b15e92
 
 
 
 
 
 
838fbb0
 
4b15e92
838fbb0
 
 
 
 
 
4b15e92
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow as tf
from tensorflow.keras.layers import Layer, Dense
import gradio as gr
import joblib
from tensorflow.keras.preprocessing.sequence import pad_sequences

# ๐Ÿ”ธ Define Custom Layer Again
class BetterAttention(Layer):
    def __init__(self, units=64, return_attention=False, **kwargs):
        super(BetterAttention, self).__init__(**kwargs)
        self.return_attention = return_attention
        self.W = Dense(units)
        self.V = Dense(1)

    def call(self, inputs):
        score = self.V(tf.nn.tanh(self.W(inputs)))
        attention_weights = tf.nn.softmax(score, axis=1)
        context_vector = attention_weights * inputs
        context_vector = tf.reduce_sum(context_vector, axis=1)
        return (context_vector, attention_weights) if self.return_attention else context_vector

# ๐Ÿ”ธ Load model & tokenizer
model = tf.keras.models.load_model("sentiment_model.keras", custom_objects={"BetterAttention": BetterAttention})
tokenizer = joblib.load("tokenizer.joblib")

# ๐Ÿ”ธ Define prediction
max_len = 40

def predict_sentiment(text):
    seq = tokenizer.texts_to_sequences([text])
    padded = pad_sequences(seq, maxlen=max_len, padding='post')
    pred = model.predict(padded)[0][0]
    label = "Positive" if pred >= 0.5 else "Negative"
    confidence = float(pred if pred >= 0.5 else 1 - pred)
    return {label: confidence}

# ๐Ÿ”ธ Gradio Interface
demo = gr.Interface(fn=predict_sentiment,
                    inputs=gr.Textbox(lines=2, placeholder="Enter a tweet..."),
                    outputs=gr.Label(num_top_classes=2),
                    title="Sentiment Analysis on Tweets",
                    description="Enter a tweet and get predicted sentiment with confidence score.")

demo.launch()