Spaces:
Runtime error
Runtime error
# pip install streamlit, | |
# pip install pyngrok==4.1.1, | |
# pip install vaderSentiment, | |
# pip install transformers | |
import os | |
os.system('pip install --upgrade pip') | |
os.system('pip install textblob') | |
os.system('pip install vaderSentiment') | |
os.system('pip install transformers') | |
os.system('pip install numpy') | |
os.system('pip install scipy') | |
os.system('pip install streamlit') | |
os.system('pip install pandas') | |
os.system('pip install altair') | |
os.system('pip install vaderSentiment') | |
os.system('pip install torch') | |
os.system('pip install pyngrok') | |
os.system('pip install streamlit --upgrade') | |
import torch | |
import streamlit as st | |
from textblob import TextBlob | |
import pandas as pd | |
import altair as alt | |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
from transformers import AutoModelForSequenceClassification | |
from transformers import TFAutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
import streamlit as st | |
# Requirements | |
model_path = f"MaryanneMuchai/twitter-finetuned-model" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
config = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
def sentiment_analysis(text): | |
text = preprocess(text) | |
# PyTorch-based models | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores_ = output[0][0].detach().numpy() | |
scores_ = softmax(scores_) | |
# Format output dict of scores | |
labels = ['Negative', 'Neutral', 'Positive'] | |
scores = {l:float(s) for (l,s) in zip(labels, scores_) } | |
return scores | |
def convert_to_df(sentiment): | |
sentiment_dict = {'polarity':sentiment.polarity,'subjectivity':sentiment.subjectivity} | |
sentiment_df = pd.DataFrame(sentiment_dict.items(),columns=['metric','value']) | |
return sentiment_df | |
def main(): | |
st.title("Sentiment Analysis NLP App") | |
st.subheader("Streamlit Projects") | |
menu = ["Home","About"] | |
choice = st.sidebar.selectbox("Menu",menu) | |
if choice == "Home": | |
st.subheader("Home") | |
with st.form(key='nlpForm'): | |
raw_text = st.text_area("Enter Text Here") | |
submit_button = st.form_submit_button(label='Analyze') | |
# layout | |
col1,col2 = st.columns(2) | |
if submit_button: | |
with col1: | |
st.info("Results") | |
sentiment = TextBlob(raw_text).sentiment | |
st.write(sentiment) | |
# Emoji | |
if sentiment.polarity > 0: | |
st.markdown("Sentiment:: Positive :smiley: ") | |
elif sentiment.polarity < 0: | |
st.markdown("Sentiment:: Negative :angry: ") | |
else: | |
st.markdown("Sentiment:: Neutral ?? ") | |
# Dataframe | |
result_df = convert_to_df(sentiment) | |
st.dataframe(result_df) | |
# Visualization | |
c = alt.Chart(result_df).mark_bar().encode( | |
x='metric', | |
y='value', | |
color='metric') | |
st.altair_chart(c,use_container_width=True) | |
with col2: | |
st.info("Token Sentiment") | |
token_sentiments = sentiment_analysis(raw_text) | |
st.write(token_sentiments) | |
else: | |
st.subheader("About") | |
if __name__ == '__main__': | |
main() | |
# Expose the app publicly using ngrok | |
# from pyngrok import ngrok | |
# public_url = ngrok.connect(port='8501') | |
# public_url | |
# !streamlit run --server.port 8501 Sentiment_Analysis.py | |
# !pip freeze > requirements.txt |