MaryanneMuchai's picture
Upload 2 files
f476dc8
import os
os.system('pip install gradio')
os.system('pip install scipy')
# pip install transformers
# pip install gradio
# pip install torch
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
import gradio as gr
import torch
# Requirements
model_path = f"MaryanneMuchai/twitter-finetuned-model"
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
def sentiment_analysis(text):
text = preprocess(text)
# PyTorch-based models
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores_ = output[0][0].detach().numpy()
scores_ = softmax(scores_)
# Format output dict of scores
labels = ['Negative', 'Neutral', 'Positive']
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
return scores
demo = gr.Interface(
fn=sentiment_analysis,
inputs=gr.Textbox(placeholder="Write your tweet here..."),
outputs="label",
interpretation="default",
examples=[["This is wonderful!"]],
title="Twitter Sentiment Analysis with Gradio",
enable_queue=True)
demo.launch()