Mariam-Elz commited on
Commit
f2452b1
·
verified ·
1 Parent(s): 200bf7b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +281 -281
app.py CHANGED
@@ -1,299 +1,299 @@
1
- # # Not ready to use yet
2
- # import spaces
3
- # import argparse
4
- # import numpy as np
5
- # import gradio as gr
6
- # from omegaconf import OmegaConf
7
- # import torch
8
- # from PIL import Image
9
- # import PIL
10
- # from pipelines import TwoStagePipeline
11
- # from huggingface_hub import hf_hub_download
12
- # import os
13
- # import rembg
14
- # from typing import Any
15
- # import json
16
- # import os
17
- # import json
18
- # import argparse
19
-
20
- # from model import CRM
21
- # from inference import generate3d
22
-
23
- # pipeline = None
24
- # rembg_session = rembg.new_session()
25
-
26
-
27
- # def expand_to_square(image, bg_color=(0, 0, 0, 0)):
28
- # # expand image to 1:1
29
- # width, height = image.size
30
- # if width == height:
31
- # return image
32
- # new_size = (max(width, height), max(width, height))
33
- # new_image = Image.new("RGBA", new_size, bg_color)
34
- # paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
35
- # new_image.paste(image, paste_position)
36
- # return new_image
37
-
38
- # def check_input_image(input_image):
39
- # if input_image is None:
40
- # raise gr.Error("No image uploaded!")
41
-
42
-
43
- # def remove_background(
44
- # image: PIL.Image.Image,
45
- # rembg_session: Any = None,
46
- # force: bool = False,
47
- # **rembg_kwargs,
48
- # ) -> PIL.Image.Image:
49
- # do_remove = True
50
- # if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
51
- # # explain why current do not rm bg
52
- # print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
53
- # background = Image.new("RGBA", image.size, (0, 0, 0, 0))
54
- # image = Image.alpha_composite(background, image)
55
- # do_remove = False
56
- # do_remove = do_remove or force
57
- # if do_remove:
58
- # image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
59
- # return image
60
-
61
- # def do_resize_content(original_image: Image, scale_rate):
62
- # # resize image content wile retain the original image size
63
- # if scale_rate != 1:
64
- # # Calculate the new size after rescaling
65
- # new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
66
- # # Resize the image while maintaining the aspect ratio
67
- # resized_image = original_image.resize(new_size)
68
- # # Create a new image with the original size and black background
69
- # padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
70
- # paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
71
- # padded_image.paste(resized_image, paste_position)
72
- # return padded_image
73
- # else:
74
- # return original_image
75
-
76
- # def add_background(image, bg_color=(255, 255, 255)):
77
- # # given an RGBA image, alpha channel is used as mask to add background color
78
- # background = Image.new("RGBA", image.size, bg_color)
79
- # return Image.alpha_composite(background, image)
80
-
81
-
82
- # def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
83
- # """
84
- # input image is a pil image in RGBA, return RGB image
85
- # """
86
- # print(background_choice)
87
- # if background_choice == "Alpha as mask":
88
- # background = Image.new("RGBA", image.size, (0, 0, 0, 0))
89
- # image = Image.alpha_composite(background, image)
90
- # else:
91
- # image = remove_background(image, rembg_session, force=True)
92
- # image = do_resize_content(image, foreground_ratio)
93
- # image = expand_to_square(image)
94
- # image = add_background(image, backgroud_color)
95
- # return image.convert("RGB")
96
-
97
- # @spaces.GPU
98
- # def gen_image(input_image, seed, scale, step):
99
- # global pipeline, model, args
100
- # pipeline.set_seed(seed)
101
- # rt_dict = pipeline(input_image, scale=scale, step=step)
102
- # stage1_images = rt_dict["stage1_images"]
103
- # stage2_images = rt_dict["stage2_images"]
104
- # np_imgs = np.concatenate(stage1_images, 1)
105
- # np_xyzs = np.concatenate(stage2_images, 1)
106
-
107
- # glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
108
- # return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path
109
-
110
-
111
- # parser = argparse.ArgumentParser()
112
- # parser.add_argument(
113
- # "--stage1_config",
114
- # type=str,
115
- # default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
116
- # help="config for stage1",
117
- # )
118
- # parser.add_argument(
119
- # "--stage2_config",
120
- # type=str,
121
- # default="configs/stage2-v2-snr.yaml",
122
- # help="config for stage2",
123
- # )
124
 
125
- # parser.add_argument("--device", type=str, default="cuda")
126
- # args = parser.parse_args()
127
-
128
- # crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
129
- # specs = json.load(open("configs/specs_objaverse_total.json"))
130
- # model = CRM(specs)
131
- # model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
132
- # model = model.to(args.device)
133
-
134
- # stage1_config = OmegaConf.load(args.stage1_config).config
135
- # stage2_config = OmegaConf.load(args.stage2_config).config
136
- # stage2_sampler_config = stage2_config.sampler
137
- # stage1_sampler_config = stage1_config.sampler
138
-
139
- # stage1_model_config = stage1_config.models
140
- # stage2_model_config = stage2_config.models
141
-
142
- # xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
143
- # pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
144
- # stage1_model_config.resume = pixel_path
145
- # stage2_model_config.resume = xyz_path
146
-
147
- # pipeline = TwoStagePipeline(
148
- # stage1_model_config,
149
- # stage2_model_config,
150
- # stage1_sampler_config,
151
- # stage2_sampler_config,
152
- # device=args.device,
153
- # dtype=torch.float32
154
- # )
155
 
156
- # _DESCRIPTION = '''
157
- # * Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
158
- # * Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
159
- # * If you find the output unsatisfying, try using different seeds:)
160
- # '''
161
-
162
- # with gr.Blocks() as demo:
163
- # gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
164
- # gr.Markdown(_DESCRIPTION)
165
- # with gr.Row():
166
- # with gr.Column():
167
- # with gr.Row():
168
- # image_input = gr.Image(
169
- # label="Image input",
170
- # image_mode="RGBA",
171
- # sources="upload",
172
- # type="pil",
173
- # )
174
- # processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
175
- # with gr.Row():
176
- # with gr.Column():
177
- # with gr.Row():
178
- # background_choice = gr.Radio([
179
- # "Alpha as mask",
180
- # "Auto Remove background"
181
- # ], value="Auto Remove background",
182
- # label="backgroud choice")
183
- # # do_remove_background = gr.Checkbox(label=, value=True)
184
- # # force_remove = gr.Checkbox(label=, value=False)
185
- # back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
186
- # foreground_ratio = gr.Slider(
187
- # label="Foreground Ratio",
188
- # minimum=0.5,
189
- # maximum=1.0,
190
- # value=1.0,
191
- # step=0.05,
192
- # )
193
-
194
- # with gr.Column():
195
- # seed = gr.Number(value=1234, label="seed", precision=0)
196
- # guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
197
- # step = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
198
- # text_button = gr.Button("Generate 3D shape")
199
- # gr.Examples(
200
- # examples=[os.path.join("examples", i) for i in os.listdir("examples")],
201
- # inputs=[image_input],
202
- # examples_per_page = 20,
203
- # )
204
- # with gr.Column():
205
- # image_output = gr.Image(interactive=False, label="Output RGB image")
206
- # xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
207
-
208
- # output_model = gr.Model3D(
209
- # label="Output OBJ",
210
- # interactive=False,
211
- # )
212
- # gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.")
213
-
214
- # inputs = [
215
- # processed_image,
216
- # seed,
217
- # guidance_scale,
218
- # step,
219
- # ]
220
- # outputs = [
221
- # image_output,
222
- # xyz_ouput,
223
- # output_model,
224
- # # output_obj,
225
- # ]
226
-
227
-
228
- # text_button.click(fn=check_input_image, inputs=[image_input]).success(
229
- # fn=preprocess_image,
230
- # inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
231
- # outputs=[processed_image],
232
- # ).success(
233
- # fn=gen_image,
234
- # inputs=inputs,
235
- # outputs=outputs,
236
- # )
237
- # demo.queue().launch()
238
 
239
 
240
 
241
- import torch
242
- import gradio as gr
243
- import requests
244
- import os
245
 
246
- # Download model weights from Hugging Face model repo (if not already present)
247
- model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
248
 
249
- model_files = {
250
- "ccm-diffusion.pth": "ccm-diffusion.pth",
251
- "pixel-diffusion.pth": "pixel-diffusion.pth",
252
- "CRM.pth": "CRM.pth",
253
- }
254
 
255
 
256
- os.makedirs("models", exist_ok=True)
257
 
258
 
259
 
260
- for filename, output_path in model_files.items():
261
- file_path = f"models/{output_path}"
262
- if not os.path.exists(file_path):
263
- url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
264
- print(f"Downloading {filename}...")
265
- response = requests.get(url)
266
- with open(file_path, "wb") as f:
267
- f.write(response.content)
268
 
269
- # Load model (This part depends on how the model is defined)
270
- device = "cuda" if torch.cuda.is_available() else "cpu"
271
 
272
- def load_model():
273
- model_path = "models/CRM.pth"
274
- model = torch.load(model_path, map_location=device)
275
- model.eval()
276
- return model
277
 
278
- model = load_model()
279
 
280
- # Define inference function
281
- def infer(image):
282
- """Process input image and return a reconstructed image."""
283
- with torch.no_grad():
284
- # Assuming model expects a tensor input
285
- image_tensor = torch.tensor(image).to(device)
286
- output = model(image_tensor)
287
- return output.cpu().numpy()
288
 
289
- # Create Gradio UI
290
- demo = gr.Interface(
291
- fn=infer,
292
- inputs=gr.Image(type="numpy"),
293
- outputs=gr.Image(type="numpy"),
294
- title="Convolutional Reconstruction Model",
295
- description="Upload an image to get the reconstructed output."
296
- )
297
 
298
- if __name__ == "__main__":
299
- demo.launch()
 
1
+ # Not ready to use yet
2
+ import spaces
3
+ import argparse
4
+ import numpy as np
5
+ import gradio as gr
6
+ from omegaconf import OmegaConf
7
+ import torch
8
+ from PIL import Image
9
+ import PIL
10
+ from pipelines import TwoStagePipeline
11
+ from huggingface_hub import hf_hub_download
12
+ import os
13
+ import rembg
14
+ from typing import Any
15
+ import json
16
+ import os
17
+ import json
18
+ import argparse
19
+
20
+ from model import CRM
21
+ from inference import generate3d
22
+
23
+ pipeline = None
24
+ rembg_session = rembg.new_session()
25
+
26
+
27
+ def expand_to_square(image, bg_color=(0, 0, 0, 0)):
28
+ # expand image to 1:1
29
+ width, height = image.size
30
+ if width == height:
31
+ return image
32
+ new_size = (max(width, height), max(width, height))
33
+ new_image = Image.new("RGBA", new_size, bg_color)
34
+ paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
35
+ new_image.paste(image, paste_position)
36
+ return new_image
37
+
38
+ def check_input_image(input_image):
39
+ if input_image is None:
40
+ raise gr.Error("No image uploaded!")
41
+
42
+
43
+ def remove_background(
44
+ image: PIL.Image.Image,
45
+ rembg_session: Any = None,
46
+ force: bool = False,
47
+ **rembg_kwargs,
48
+ ) -> PIL.Image.Image:
49
+ do_remove = True
50
+ if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
51
+ # explain why current do not rm bg
52
+ print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
53
+ background = Image.new("RGBA", image.size, (0, 0, 0, 0))
54
+ image = Image.alpha_composite(background, image)
55
+ do_remove = False
56
+ do_remove = do_remove or force
57
+ if do_remove:
58
+ image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
59
+ return image
60
+
61
+ def do_resize_content(original_image: Image, scale_rate):
62
+ # resize image content wile retain the original image size
63
+ if scale_rate != 1:
64
+ # Calculate the new size after rescaling
65
+ new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
66
+ # Resize the image while maintaining the aspect ratio
67
+ resized_image = original_image.resize(new_size)
68
+ # Create a new image with the original size and black background
69
+ padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
70
+ paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
71
+ padded_image.paste(resized_image, paste_position)
72
+ return padded_image
73
+ else:
74
+ return original_image
75
+
76
+ def add_background(image, bg_color=(255, 255, 255)):
77
+ # given an RGBA image, alpha channel is used as mask to add background color
78
+ background = Image.new("RGBA", image.size, bg_color)
79
+ return Image.alpha_composite(background, image)
80
+
81
+
82
+ def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
83
+ """
84
+ input image is a pil image in RGBA, return RGB image
85
+ """
86
+ print(background_choice)
87
+ if background_choice == "Alpha as mask":
88
+ background = Image.new("RGBA", image.size, (0, 0, 0, 0))
89
+ image = Image.alpha_composite(background, image)
90
+ else:
91
+ image = remove_background(image, rembg_session, force=True)
92
+ image = do_resize_content(image, foreground_ratio)
93
+ image = expand_to_square(image)
94
+ image = add_background(image, backgroud_color)
95
+ return image.convert("RGB")
96
+
97
+ @spaces.GPU
98
+ def gen_image(input_image, seed, scale, step):
99
+ global pipeline, model, args
100
+ pipeline.set_seed(seed)
101
+ rt_dict = pipeline(input_image, scale=scale, step=step)
102
+ stage1_images = rt_dict["stage1_images"]
103
+ stage2_images = rt_dict["stage2_images"]
104
+ np_imgs = np.concatenate(stage1_images, 1)
105
+ np_xyzs = np.concatenate(stage2_images, 1)
106
+
107
+ glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
108
+ return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path
109
+
110
+
111
+ parser = argparse.ArgumentParser()
112
+ parser.add_argument(
113
+ "--stage1_config",
114
+ type=str,
115
+ default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
116
+ help="config for stage1",
117
+ )
118
+ parser.add_argument(
119
+ "--stage2_config",
120
+ type=str,
121
+ default="configs/stage2-v2-snr.yaml",
122
+ help="config for stage2",
123
+ )
124
 
125
+ parser.add_argument("--device", type=str, default="cuda")
126
+ args = parser.parse_args()
127
+
128
+ crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
129
+ specs = json.load(open("configs/specs_objaverse_total.json"))
130
+ model = CRM(specs)
131
+ model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
132
+ model = model.to(args.device)
133
+
134
+ stage1_config = OmegaConf.load(args.stage1_config).config
135
+ stage2_config = OmegaConf.load(args.stage2_config).config
136
+ stage2_sampler_config = stage2_config.sampler
137
+ stage1_sampler_config = stage1_config.sampler
138
+
139
+ stage1_model_config = stage1_config.models
140
+ stage2_model_config = stage2_config.models
141
+
142
+ xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
143
+ pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
144
+ stage1_model_config.resume = pixel_path
145
+ stage2_model_config.resume = xyz_path
146
+
147
+ pipeline = TwoStagePipeline(
148
+ stage1_model_config,
149
+ stage2_model_config,
150
+ stage1_sampler_config,
151
+ stage2_sampler_config,
152
+ device=args.device,
153
+ dtype=torch.float32
154
+ )
155
 
156
+ _DESCRIPTION = '''
157
+ * Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
158
+ * Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
159
+ * If you find the output unsatisfying, try using different seeds:)
160
+ '''
161
+
162
+ with gr.Blocks() as demo:
163
+ gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
164
+ gr.Markdown(_DESCRIPTION)
165
+ with gr.Row():
166
+ with gr.Column():
167
+ with gr.Row():
168
+ image_input = gr.Image(
169
+ label="Image input",
170
+ image_mode="RGBA",
171
+ sources="upload",
172
+ type="pil",
173
+ )
174
+ processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
175
+ with gr.Row():
176
+ with gr.Column():
177
+ with gr.Row():
178
+ background_choice = gr.Radio([
179
+ "Alpha as mask",
180
+ "Auto Remove background"
181
+ ], value="Auto Remove background",
182
+ label="backgroud choice")
183
+ # do_remove_background = gr.Checkbox(label=, value=True)
184
+ # force_remove = gr.Checkbox(label=, value=False)
185
+ back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
186
+ foreground_ratio = gr.Slider(
187
+ label="Foreground Ratio",
188
+ minimum=0.5,
189
+ maximum=1.0,
190
+ value=1.0,
191
+ step=0.05,
192
+ )
193
+
194
+ with gr.Column():
195
+ seed = gr.Number(value=1234, label="seed", precision=0)
196
+ guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
197
+ step = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
198
+ text_button = gr.Button("Generate 3D shape")
199
+ gr.Examples(
200
+ examples=[os.path.join("examples", i) for i in os.listdir("examples")],
201
+ inputs=[image_input],
202
+ examples_per_page = 20,
203
+ )
204
+ with gr.Column():
205
+ image_output = gr.Image(interactive=False, label="Output RGB image")
206
+ xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
207
+
208
+ output_model = gr.Model3D(
209
+ label="Output OBJ",
210
+ interactive=False,
211
+ )
212
+ gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.")
213
+
214
+ inputs = [
215
+ processed_image,
216
+ seed,
217
+ guidance_scale,
218
+ step,
219
+ ]
220
+ outputs = [
221
+ image_output,
222
+ xyz_ouput,
223
+ output_model,
224
+ # output_obj,
225
+ ]
226
+
227
+
228
+ text_button.click(fn=check_input_image, inputs=[image_input]).success(
229
+ fn=preprocess_image,
230
+ inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
231
+ outputs=[processed_image],
232
+ ).success(
233
+ fn=gen_image,
234
+ inputs=inputs,
235
+ outputs=outputs,
236
+ )
237
+ demo.queue().launch()
238
 
239
 
240
 
241
+ # import torch
242
+ # import gradio as gr
243
+ # import requests
244
+ # import os
245
 
246
+ # # Download model weights from Hugging Face model repo (if not already present)
247
+ # model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
248
 
249
+ # model_files = {
250
+ # "ccm-diffusion.pth": "ccm-diffusion.pth",
251
+ # "pixel-diffusion.pth": "pixel-diffusion.pth",
252
+ # "CRM.pth": "CRM.pth",
253
+ # }
254
 
255
 
256
+ # os.makedirs("models", exist_ok=True)
257
 
258
 
259
 
260
+ # for filename, output_path in model_files.items():
261
+ # file_path = f"models/{output_path}"
262
+ # if not os.path.exists(file_path):
263
+ # url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
264
+ # print(f"Downloading {filename}...")
265
+ # response = requests.get(url)
266
+ # with open(file_path, "wb") as f:
267
+ # f.write(response.content)
268
 
269
+ # # Load model (This part depends on how the model is defined)
270
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
271
 
272
+ # def load_model():
273
+ # model_path = "models/CRM.pth"
274
+ # model = torch.load(model_path, map_location=device)
275
+ # model.eval()
276
+ # return model
277
 
278
+ # model = load_model()
279
 
280
+ # # Define inference function
281
+ # def infer(image):
282
+ # """Process input image and return a reconstructed image."""
283
+ # with torch.no_grad():
284
+ # # Assuming model expects a tensor input
285
+ # image_tensor = torch.tensor(image).to(device)
286
+ # output = model(image_tensor)
287
+ # return output.cpu().numpy()
288
 
289
+ # # Create Gradio UI
290
+ # demo = gr.Interface(
291
+ # fn=infer,
292
+ # inputs=gr.Image(type="numpy"),
293
+ # outputs=gr.Image(type="numpy"),
294
+ # title="Convolutional Reconstruction Model",
295
+ # description="Upload an image to get the reconstructed output."
296
+ # )
297
 
298
+ # if __name__ == "__main__":
299
+ # demo.launch()