Spaces:
Runtime error
Runtime error
Upload libs/sample.py with huggingface_hub
Browse files- libs/sample.py +380 -0
libs/sample.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from imagedream.camera_utils import get_camera_for_index
|
| 4 |
+
from imagedream.ldm.util import set_seed, add_random_background
|
| 5 |
+
from libs.base_utils import do_resize_content
|
| 6 |
+
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
|
| 7 |
+
from torchvision import transforms as T
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ImageDreamDiffusion:
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model,
|
| 14 |
+
device,
|
| 15 |
+
dtype,
|
| 16 |
+
mode,
|
| 17 |
+
num_frames,
|
| 18 |
+
camera_views,
|
| 19 |
+
ref_position,
|
| 20 |
+
random_background=False,
|
| 21 |
+
offset_noise=False,
|
| 22 |
+
resize_rate=1,
|
| 23 |
+
image_size=256,
|
| 24 |
+
seed=1234,
|
| 25 |
+
) -> None:
|
| 26 |
+
assert mode in ["pixel", "local"]
|
| 27 |
+
size = image_size
|
| 28 |
+
self.seed = seed
|
| 29 |
+
batch_size = max(4, num_frames)
|
| 30 |
+
|
| 31 |
+
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
| 32 |
+
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
| 33 |
+
sampler = DDIMSampler(model)
|
| 34 |
+
|
| 35 |
+
# pre-compute camera matrices
|
| 36 |
+
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
| 37 |
+
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
|
| 38 |
+
camera = torch.stack(camera)
|
| 39 |
+
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
| 40 |
+
|
| 41 |
+
self.image_transform = T.Compose(
|
| 42 |
+
[
|
| 43 |
+
T.Resize((size, size)),
|
| 44 |
+
T.ToTensor(),
|
| 45 |
+
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
| 46 |
+
]
|
| 47 |
+
)
|
| 48 |
+
self.dtype = dtype
|
| 49 |
+
self.ref_position = ref_position
|
| 50 |
+
self.mode = mode
|
| 51 |
+
self.random_background = random_background
|
| 52 |
+
self.resize_rate = resize_rate
|
| 53 |
+
self.num_frames = num_frames
|
| 54 |
+
self.size = size
|
| 55 |
+
self.device = device
|
| 56 |
+
self.batch_size = batch_size
|
| 57 |
+
self.model = model
|
| 58 |
+
self.sampler = sampler
|
| 59 |
+
self.uc = uc
|
| 60 |
+
self.camera = camera
|
| 61 |
+
self.offset_noise = offset_noise
|
| 62 |
+
|
| 63 |
+
@staticmethod
|
| 64 |
+
def i2i(
|
| 65 |
+
model,
|
| 66 |
+
image_size,
|
| 67 |
+
prompt,
|
| 68 |
+
uc,
|
| 69 |
+
sampler,
|
| 70 |
+
ip=None,
|
| 71 |
+
step=20,
|
| 72 |
+
scale=5.0,
|
| 73 |
+
batch_size=8,
|
| 74 |
+
ddim_eta=0.0,
|
| 75 |
+
dtype=torch.float32,
|
| 76 |
+
device="cuda",
|
| 77 |
+
camera=None,
|
| 78 |
+
num_frames=4,
|
| 79 |
+
pixel_control=False,
|
| 80 |
+
transform=None,
|
| 81 |
+
offset_noise=False,
|
| 82 |
+
):
|
| 83 |
+
""" The function supports additional image prompt.
|
| 84 |
+
Args:
|
| 85 |
+
model (_type_): the image dream model
|
| 86 |
+
image_size (_type_): size of diffusion output (standard 256)
|
| 87 |
+
prompt (_type_): text prompt for the image (prompt in type str)
|
| 88 |
+
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024])
|
| 89 |
+
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler
|
| 90 |
+
ip (Image, optional): the image prompt. Defaults to None.
|
| 91 |
+
step (int, optional): _description_. Defaults to 20.
|
| 92 |
+
scale (float, optional): _description_. Defaults to 7.5.
|
| 93 |
+
batch_size (int, optional): _description_. Defaults to 8.
|
| 94 |
+
ddim_eta (float, optional): _description_. Defaults to 0.0.
|
| 95 |
+
dtype (_type_, optional): _description_. Defaults to torch.float32.
|
| 96 |
+
device (str, optional): _description_. Defaults to "cuda".
|
| 97 |
+
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
| 98 |
+
num_frames (int, optional): _num of frames (views) to generate
|
| 99 |
+
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode
|
| 100 |
+
transform: Compose(
|
| 101 |
+
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn)
|
| 102 |
+
ToTensor()
|
| 103 |
+
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
| 104 |
+
)
|
| 105 |
+
"""
|
| 106 |
+
ip_raw = ip
|
| 107 |
+
if type(prompt) != list:
|
| 108 |
+
prompt = [prompt]
|
| 109 |
+
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
| 110 |
+
c = model.get_learned_conditioning(prompt).to(
|
| 111 |
+
device
|
| 112 |
+
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
|
| 113 |
+
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
|
| 114 |
+
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
| 115 |
+
|
| 116 |
+
if camera is not None:
|
| 117 |
+
c_["camera"] = uc_["camera"] = (
|
| 118 |
+
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
| 119 |
+
)
|
| 120 |
+
c_["num_frames"] = uc_["num_frames"] = num_frames
|
| 121 |
+
|
| 122 |
+
if ip is not None:
|
| 123 |
+
ip_embed = model.get_learned_image_conditioning(ip).to(
|
| 124 |
+
device
|
| 125 |
+
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
|
| 126 |
+
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
| 127 |
+
c_["ip"] = ip_
|
| 128 |
+
uc_["ip"] = torch.zeros_like(ip_)
|
| 129 |
+
|
| 130 |
+
if pixel_control:
|
| 131 |
+
assert camera is not None
|
| 132 |
+
ip = transform(ip).to(
|
| 133 |
+
device
|
| 134 |
+
) # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00
|
| 135 |
+
ip_img = model.get_first_stage_encoding(
|
| 136 |
+
model.encode_first_stage(ip[None, :, :, :])
|
| 137 |
+
) # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55
|
| 138 |
+
c_["ip_img"] = ip_img
|
| 139 |
+
uc_["ip_img"] = torch.zeros_like(ip_img)
|
| 140 |
+
|
| 141 |
+
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
|
| 142 |
+
if offset_noise:
|
| 143 |
+
ref = transform(ip_raw).to(device)
|
| 144 |
+
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
| 145 |
+
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
| 146 |
+
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
| 147 |
+
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
| 148 |
+
|
| 149 |
+
samples_ddim, _ = (
|
| 150 |
+
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
|
| 151 |
+
S=step,
|
| 152 |
+
conditioning=c_,
|
| 153 |
+
batch_size=batch_size,
|
| 154 |
+
shape=shape,
|
| 155 |
+
verbose=False,
|
| 156 |
+
unconditional_guidance_scale=scale,
|
| 157 |
+
unconditional_conditioning=uc_,
|
| 158 |
+
eta=ddim_eta,
|
| 159 |
+
x_T=x_T if offset_noise else None,
|
| 160 |
+
)
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
x_sample = model.decode_first_stage(samples_ddim)
|
| 164 |
+
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
| 165 |
+
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
| 166 |
+
|
| 167 |
+
return list(x_sample.astype(np.uint8))
|
| 168 |
+
|
| 169 |
+
def diffuse(self, t, ip, n_test=2):
|
| 170 |
+
set_seed(self.seed)
|
| 171 |
+
ip = do_resize_content(ip, self.resize_rate)
|
| 172 |
+
if self.random_background:
|
| 173 |
+
ip = add_random_background(ip)
|
| 174 |
+
|
| 175 |
+
images = []
|
| 176 |
+
for _ in range(n_test):
|
| 177 |
+
img = self.i2i(
|
| 178 |
+
self.model,
|
| 179 |
+
self.size,
|
| 180 |
+
t,
|
| 181 |
+
self.uc,
|
| 182 |
+
self.sampler,
|
| 183 |
+
ip=ip,
|
| 184 |
+
step=50,
|
| 185 |
+
scale=5,
|
| 186 |
+
batch_size=self.batch_size,
|
| 187 |
+
ddim_eta=0.0,
|
| 188 |
+
dtype=self.dtype,
|
| 189 |
+
device=self.device,
|
| 190 |
+
camera=self.camera,
|
| 191 |
+
num_frames=self.num_frames,
|
| 192 |
+
pixel_control=(self.mode == "pixel"),
|
| 193 |
+
transform=self.image_transform,
|
| 194 |
+
offset_noise=self.offset_noise,
|
| 195 |
+
)
|
| 196 |
+
img = np.concatenate(img, 1)
|
| 197 |
+
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1)
|
| 198 |
+
images.append(img)
|
| 199 |
+
set_seed() # unset random and numpy seed
|
| 200 |
+
return images
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class ImageDreamDiffusionStage2:
|
| 204 |
+
def __init__(
|
| 205 |
+
self,
|
| 206 |
+
model,
|
| 207 |
+
device,
|
| 208 |
+
dtype,
|
| 209 |
+
num_frames,
|
| 210 |
+
camera_views,
|
| 211 |
+
ref_position,
|
| 212 |
+
random_background=False,
|
| 213 |
+
offset_noise=False,
|
| 214 |
+
resize_rate=1,
|
| 215 |
+
mode="pixel",
|
| 216 |
+
image_size=256,
|
| 217 |
+
seed=1234,
|
| 218 |
+
) -> None:
|
| 219 |
+
assert mode in ["pixel", "local"]
|
| 220 |
+
|
| 221 |
+
size = image_size
|
| 222 |
+
self.seed = seed
|
| 223 |
+
batch_size = max(4, num_frames)
|
| 224 |
+
|
| 225 |
+
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
| 226 |
+
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
| 227 |
+
sampler = DDIMSampler(model)
|
| 228 |
+
|
| 229 |
+
# pre-compute camera matrices
|
| 230 |
+
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
| 231 |
+
if ref_position is not None:
|
| 232 |
+
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
|
| 233 |
+
camera = torch.stack(camera)
|
| 234 |
+
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
| 235 |
+
|
| 236 |
+
self.image_transform = T.Compose(
|
| 237 |
+
[
|
| 238 |
+
T.Resize((size, size)),
|
| 239 |
+
T.ToTensor(),
|
| 240 |
+
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
| 241 |
+
]
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
self.dtype = dtype
|
| 245 |
+
self.mode = mode
|
| 246 |
+
self.ref_position = ref_position
|
| 247 |
+
self.random_background = random_background
|
| 248 |
+
self.resize_rate = resize_rate
|
| 249 |
+
self.num_frames = num_frames
|
| 250 |
+
self.size = size
|
| 251 |
+
self.device = device
|
| 252 |
+
self.batch_size = batch_size
|
| 253 |
+
self.model = model
|
| 254 |
+
self.sampler = sampler
|
| 255 |
+
self.uc = uc
|
| 256 |
+
self.camera = camera
|
| 257 |
+
self.offset_noise = offset_noise
|
| 258 |
+
|
| 259 |
+
@staticmethod
|
| 260 |
+
def i2iStage2(
|
| 261 |
+
model,
|
| 262 |
+
image_size,
|
| 263 |
+
prompt,
|
| 264 |
+
uc,
|
| 265 |
+
sampler,
|
| 266 |
+
pixel_images,
|
| 267 |
+
ip=None,
|
| 268 |
+
step=20,
|
| 269 |
+
scale=5.0,
|
| 270 |
+
batch_size=8,
|
| 271 |
+
ddim_eta=0.0,
|
| 272 |
+
dtype=torch.float32,
|
| 273 |
+
device="cuda",
|
| 274 |
+
camera=None,
|
| 275 |
+
num_frames=4,
|
| 276 |
+
pixel_control=False,
|
| 277 |
+
transform=None,
|
| 278 |
+
offset_noise=False,
|
| 279 |
+
):
|
| 280 |
+
ip_raw = ip
|
| 281 |
+
if type(prompt) != list:
|
| 282 |
+
prompt = [prompt]
|
| 283 |
+
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
| 284 |
+
c = model.get_learned_conditioning(prompt).to(
|
| 285 |
+
device
|
| 286 |
+
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
|
| 287 |
+
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
|
| 288 |
+
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
| 289 |
+
|
| 290 |
+
if camera is not None:
|
| 291 |
+
c_["camera"] = uc_["camera"] = (
|
| 292 |
+
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
| 293 |
+
)
|
| 294 |
+
c_["num_frames"] = uc_["num_frames"] = num_frames
|
| 295 |
+
|
| 296 |
+
if ip is not None:
|
| 297 |
+
ip_embed = model.get_learned_image_conditioning(ip).to(
|
| 298 |
+
device
|
| 299 |
+
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
|
| 300 |
+
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
| 301 |
+
c_["ip"] = ip_
|
| 302 |
+
uc_["ip"] = torch.zeros_like(ip_)
|
| 303 |
+
|
| 304 |
+
if pixel_control:
|
| 305 |
+
assert camera is not None
|
| 306 |
+
|
| 307 |
+
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images])
|
| 308 |
+
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images))
|
| 309 |
+
|
| 310 |
+
c_["pixel_images"] = latent_pixel_images
|
| 311 |
+
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images)
|
| 312 |
+
|
| 313 |
+
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
|
| 314 |
+
if offset_noise:
|
| 315 |
+
ref = transform(ip_raw).to(device)
|
| 316 |
+
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
| 317 |
+
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
| 318 |
+
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
| 319 |
+
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
| 320 |
+
|
| 321 |
+
samples_ddim, _ = (
|
| 322 |
+
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
|
| 323 |
+
S=step,
|
| 324 |
+
conditioning=c_,
|
| 325 |
+
batch_size=batch_size,
|
| 326 |
+
shape=shape,
|
| 327 |
+
verbose=False,
|
| 328 |
+
unconditional_guidance_scale=scale,
|
| 329 |
+
unconditional_conditioning=uc_,
|
| 330 |
+
eta=ddim_eta,
|
| 331 |
+
x_T=x_T if offset_noise else None,
|
| 332 |
+
)
|
| 333 |
+
)
|
| 334 |
+
x_sample = model.decode_first_stage(samples_ddim)
|
| 335 |
+
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
| 336 |
+
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
| 337 |
+
|
| 338 |
+
return list(x_sample.astype(np.uint8))
|
| 339 |
+
|
| 340 |
+
@torch.no_grad()
|
| 341 |
+
def diffuse(self, t, ip, pixel_images, n_test=2):
|
| 342 |
+
set_seed(self.seed)
|
| 343 |
+
ip = do_resize_content(ip, self.resize_rate)
|
| 344 |
+
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images]
|
| 345 |
+
|
| 346 |
+
if self.random_background:
|
| 347 |
+
bg_color = np.random.rand() * 255
|
| 348 |
+
ip = add_random_background(ip, bg_color)
|
| 349 |
+
pixel_images = [add_random_background(i, bg_color) for i in pixel_images]
|
| 350 |
+
|
| 351 |
+
images = []
|
| 352 |
+
for _ in range(n_test):
|
| 353 |
+
img = self.i2iStage2(
|
| 354 |
+
self.model,
|
| 355 |
+
self.size,
|
| 356 |
+
t,
|
| 357 |
+
self.uc,
|
| 358 |
+
self.sampler,
|
| 359 |
+
pixel_images=pixel_images,
|
| 360 |
+
ip=ip,
|
| 361 |
+
step=50,
|
| 362 |
+
scale=5,
|
| 363 |
+
batch_size=self.batch_size,
|
| 364 |
+
ddim_eta=0.0,
|
| 365 |
+
dtype=self.dtype,
|
| 366 |
+
device=self.device,
|
| 367 |
+
camera=self.camera,
|
| 368 |
+
num_frames=self.num_frames,
|
| 369 |
+
pixel_control=(self.mode == "pixel"),
|
| 370 |
+
transform=self.image_transform,
|
| 371 |
+
offset_noise=self.offset_noise,
|
| 372 |
+
)
|
| 373 |
+
img = np.concatenate(img, 1)
|
| 374 |
+
img = np.concatenate(
|
| 375 |
+
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]),
|
| 376 |
+
axis=1,
|
| 377 |
+
)
|
| 378 |
+
images.append(img)
|
| 379 |
+
set_seed() # unset random and numpy seed
|
| 380 |
+
return images
|