Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,447 +1,3 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# import torch
|
| 3 |
-
# from PIL import Image
|
| 4 |
-
# from model import CRM
|
| 5 |
-
# from inference import generate3d
|
| 6 |
-
# import numpy as np
|
| 7 |
-
|
| 8 |
-
# # Load model
|
| 9 |
-
# crm_path = "CRM.pth" # Make sure the model is uploaded to the Space
|
| 10 |
-
# model = CRM(torch.load(crm_path, map_location="cpu"))
|
| 11 |
-
# model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 12 |
-
|
| 13 |
-
# def generate_3d(image_path, seed=1234, scale=5.5, step=30):
|
| 14 |
-
# image = Image.open(image_path).convert("RGB")
|
| 15 |
-
# np_img = np.array(image)
|
| 16 |
-
# glb_path = generate3d(model, np_img, np_img, "cuda:0" if torch.cuda.is_available() else "cpu")
|
| 17 |
-
# return glb_path
|
| 18 |
-
|
| 19 |
-
# iface = gr.Interface(
|
| 20 |
-
# fn=generate_3d,
|
| 21 |
-
# inputs=gr.Image(type="filepath"),
|
| 22 |
-
# outputs=gr.Model3D(),
|
| 23 |
-
# title="Convolutional Reconstruction Model (CRM)",
|
| 24 |
-
# description="Upload an image to generate a 3D model."
|
| 25 |
-
# )
|
| 26 |
-
|
| 27 |
-
# iface.launch()
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
#############2nd################3
|
| 31 |
-
# import os
|
| 32 |
-
# import torch
|
| 33 |
-
# import gradio as gr
|
| 34 |
-
# from huggingface_hub import hf_hub_download
|
| 35 |
-
# from model import CRM # Make sure this matches your model file structure
|
| 36 |
-
|
| 37 |
-
# # Define model details
|
| 38 |
-
# REPO_ID = "Mariam-Elz/CRM" # Hugging Face model repo
|
| 39 |
-
# MODEL_FILES = {
|
| 40 |
-
# "ccm-diffusion": "ccm-diffusion.pth",
|
| 41 |
-
# "pixel-diffusion": "pixel-diffusion.pth",
|
| 42 |
-
# "CRM": "CRM.pth"
|
| 43 |
-
# }
|
| 44 |
-
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 45 |
-
|
| 46 |
-
# # Download models from Hugging Face if not already present
|
| 47 |
-
# MODEL_DIR = "./models"
|
| 48 |
-
# os.makedirs(MODEL_DIR, exist_ok=True)
|
| 49 |
-
|
| 50 |
-
# for name, filename in MODEL_FILES.items():
|
| 51 |
-
# model_path = os.path.join(MODEL_DIR, filename)
|
| 52 |
-
# if not os.path.exists(model_path):
|
| 53 |
-
# print(f"Downloading {filename}...")
|
| 54 |
-
# hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR)
|
| 55 |
-
|
| 56 |
-
# # Load the model
|
| 57 |
-
# print("Loading CRM Model...")
|
| 58 |
-
# model = CRM()
|
| 59 |
-
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE))
|
| 60 |
-
# model.to(DEVICE)
|
| 61 |
-
# model.eval()
|
| 62 |
-
# print("✅ Model Loaded Successfully!")
|
| 63 |
-
|
| 64 |
-
# # Define Gradio Interface
|
| 65 |
-
# def predict(input_image):
|
| 66 |
-
# with torch.no_grad():
|
| 67 |
-
# output = model(input_image.to(DEVICE)) # Modify based on model input format
|
| 68 |
-
# return output.cpu()
|
| 69 |
-
|
| 70 |
-
# demo = gr.Interface(
|
| 71 |
-
# fn=predict,
|
| 72 |
-
# inputs=gr.Image(type="pil"),
|
| 73 |
-
# outputs=gr.Image(type="pil"),
|
| 74 |
-
# title="Convolutional Reconstruction Model (CRM)",
|
| 75 |
-
# description="Upload an image to generate a reconstructed output."
|
| 76 |
-
# )
|
| 77 |
-
|
| 78 |
-
# if __name__ == "__main__":
|
| 79 |
-
# demo.launch()
|
| 80 |
-
########################3rd-MAIN######################3
|
| 81 |
-
|
| 82 |
-
# import torch
|
| 83 |
-
# import gradio as gr
|
| 84 |
-
# import requests
|
| 85 |
-
# import os
|
| 86 |
-
|
| 87 |
-
# # Download model weights from Hugging Face model repo (if not already present)
|
| 88 |
-
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
| 89 |
-
|
| 90 |
-
# model_files = {
|
| 91 |
-
# "ccm-diffusion.pth": "ccm-diffusion.pth",
|
| 92 |
-
# "pixel-diffusion.pth": "pixel-diffusion.pth",
|
| 93 |
-
# "CRM.pth": "CRM.pth",
|
| 94 |
-
# }
|
| 95 |
-
|
| 96 |
-
# os.makedirs("models", exist_ok=True)
|
| 97 |
-
|
| 98 |
-
# for filename, output_path in model_files.items():
|
| 99 |
-
# file_path = f"models/{output_path}"
|
| 100 |
-
# if not os.path.exists(file_path):
|
| 101 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
| 102 |
-
# print(f"Downloading {filename}...")
|
| 103 |
-
# response = requests.get(url)
|
| 104 |
-
# with open(file_path, "wb") as f:
|
| 105 |
-
# f.write(response.content)
|
| 106 |
-
|
| 107 |
-
# # Load model (This part depends on how the model is defined)
|
| 108 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 109 |
-
|
| 110 |
-
# def load_model():
|
| 111 |
-
# model_path = "models/CRM.pth"
|
| 112 |
-
# model = torch.load(model_path, map_location=device)
|
| 113 |
-
# model.eval()
|
| 114 |
-
# return model
|
| 115 |
-
|
| 116 |
-
# model = load_model()
|
| 117 |
-
|
| 118 |
-
# # Define inference function
|
| 119 |
-
# def infer(image):
|
| 120 |
-
# """Process input image and return a reconstructed image."""
|
| 121 |
-
# with torch.no_grad():
|
| 122 |
-
# # Assuming model expects a tensor input
|
| 123 |
-
# image_tensor = torch.tensor(image).to(device)
|
| 124 |
-
# output = model(image_tensor)
|
| 125 |
-
# return output.cpu().numpy()
|
| 126 |
-
|
| 127 |
-
# # Create Gradio UI
|
| 128 |
-
# demo = gr.Interface(
|
| 129 |
-
# fn=infer,
|
| 130 |
-
# inputs=gr.Image(type="numpy"),
|
| 131 |
-
# outputs=gr.Image(type="numpy"),
|
| 132 |
-
# title="Convolutional Reconstruction Model",
|
| 133 |
-
# description="Upload an image to get the reconstructed output."
|
| 134 |
-
# )
|
| 135 |
-
|
| 136 |
-
# if __name__ == "__main__":
|
| 137 |
-
# demo.launch()
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
#################4th##################
|
| 141 |
-
|
| 142 |
-
# import torch
|
| 143 |
-
# import gradio as gr
|
| 144 |
-
# import requests
|
| 145 |
-
# import os
|
| 146 |
-
|
| 147 |
-
# # Define model repo
|
| 148 |
-
# model_repo = "Mariam-Elz/CRM"
|
| 149 |
-
|
| 150 |
-
# # Define model files and download paths
|
| 151 |
-
# model_files = {
|
| 152 |
-
# "CRM.pth": "models/CRM.pth"
|
| 153 |
-
# }
|
| 154 |
-
|
| 155 |
-
# os.makedirs("models", exist_ok=True)
|
| 156 |
-
|
| 157 |
-
# # Download model files only if they don't exist
|
| 158 |
-
# for filename, output_path in model_files.items():
|
| 159 |
-
# if not os.path.exists(output_path):
|
| 160 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
| 161 |
-
# print(f"Downloading {filename}...")
|
| 162 |
-
# response = requests.get(url)
|
| 163 |
-
# with open(output_path, "wb") as f:
|
| 164 |
-
# f.write(response.content)
|
| 165 |
-
|
| 166 |
-
# # Load model with low memory usage
|
| 167 |
-
# def load_model():
|
| 168 |
-
# model_path = "models/CRM.pth"
|
| 169 |
-
# model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage
|
| 170 |
-
# model.eval()
|
| 171 |
-
# return model
|
| 172 |
-
|
| 173 |
-
# model = load_model()
|
| 174 |
-
|
| 175 |
-
# # Define inference function
|
| 176 |
-
# def infer(image):
|
| 177 |
-
# """Process input image and return a reconstructed image."""
|
| 178 |
-
# with torch.no_grad():
|
| 179 |
-
# image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension
|
| 180 |
-
# image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory
|
| 181 |
-
# output = model(image_tensor)
|
| 182 |
-
# return output.squeeze(0).numpy()
|
| 183 |
-
|
| 184 |
-
# # Create Gradio UI
|
| 185 |
-
# demo = gr.Interface(
|
| 186 |
-
# fn=infer,
|
| 187 |
-
# inputs=gr.Image(type="numpy"),
|
| 188 |
-
# outputs=gr.Image(type="numpy"),
|
| 189 |
-
# title="Convolutional Reconstruction Model",
|
| 190 |
-
# description="Upload an image to get the reconstructed output."
|
| 191 |
-
# )
|
| 192 |
-
|
| 193 |
-
# if __name__ == "__main__":
|
| 194 |
-
# demo.launch()
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
# ##############5TH#################
|
| 198 |
-
# import torch
|
| 199 |
-
# import torch.nn as nn
|
| 200 |
-
# import gradio as gr
|
| 201 |
-
# import requests
|
| 202 |
-
# import os
|
| 203 |
-
|
| 204 |
-
# # Define model repo
|
| 205 |
-
# model_repo = "Mariam-Elz/CRM"
|
| 206 |
-
|
| 207 |
-
# # Define model files and download paths
|
| 208 |
-
# model_files = {
|
| 209 |
-
# "CRM.pth": "models/CRM.pth"
|
| 210 |
-
# }
|
| 211 |
-
|
| 212 |
-
# os.makedirs("models", exist_ok=True)
|
| 213 |
-
|
| 214 |
-
# # Download model files only if they don't exist
|
| 215 |
-
# for filename, output_path in model_files.items():
|
| 216 |
-
# if not os.path.exists(output_path):
|
| 217 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
| 218 |
-
# print(f"Downloading {filename}...")
|
| 219 |
-
# response = requests.get(url)
|
| 220 |
-
# with open(output_path, "wb") as f:
|
| 221 |
-
# f.write(response.content)
|
| 222 |
-
|
| 223 |
-
# # Define the model architecture (you MUST replace this with your actual model)
|
| 224 |
-
# class CRM_Model(nn.Module):
|
| 225 |
-
# def __init__(self):
|
| 226 |
-
# super(CRM_Model, self).__init__()
|
| 227 |
-
# self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
| 228 |
-
# self.relu = nn.ReLU()
|
| 229 |
-
# self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)
|
| 230 |
-
|
| 231 |
-
# def forward(self, x):
|
| 232 |
-
# x = self.layer1(x)
|
| 233 |
-
# x = self.relu(x)
|
| 234 |
-
# x = self.layer2(x)
|
| 235 |
-
# return x
|
| 236 |
-
|
| 237 |
-
# # Load model with proper architecture
|
| 238 |
-
# def load_model():
|
| 239 |
-
# model = CRM_Model() # Instantiate the model architecture
|
| 240 |
-
# model_path = "models/CRM.pth"
|
| 241 |
-
# model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights
|
| 242 |
-
# model.eval() # Set to evaluation mode
|
| 243 |
-
# return model
|
| 244 |
-
|
| 245 |
-
# model = load_model()
|
| 246 |
-
|
| 247 |
-
# # Define inference function
|
| 248 |
-
# def infer(image):
|
| 249 |
-
# """Process input image and return a reconstructed image."""
|
| 250 |
-
# with torch.no_grad():
|
| 251 |
-
# image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor
|
| 252 |
-
# output = model(image_tensor) # Run through model
|
| 253 |
-
# output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image
|
| 254 |
-
# return output.astype("uint8")
|
| 255 |
-
|
| 256 |
-
# # Create Gradio UI
|
| 257 |
-
# demo = gr.Interface(
|
| 258 |
-
# fn=infer,
|
| 259 |
-
# inputs=gr.Image(type="numpy"),
|
| 260 |
-
# outputs=gr.Image(type="numpy"),
|
| 261 |
-
# title="Convolutional Reconstruction Model",
|
| 262 |
-
# description="Upload an image to get the reconstructed output."
|
| 263 |
-
# )
|
| 264 |
-
|
| 265 |
-
# if __name__ == "__main__":
|
| 266 |
-
# demo.launch()
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
#############6th-worked-proc##################
|
| 270 |
-
# import torch
|
| 271 |
-
# import gradio as gr
|
| 272 |
-
# import requests
|
| 273 |
-
# import os
|
| 274 |
-
# import numpy as np
|
| 275 |
-
|
| 276 |
-
# # Hugging Face Model Repository
|
| 277 |
-
# model_repo = "Mariam-Elz/CRM"
|
| 278 |
-
|
| 279 |
-
# # Download Model Weights (Only CRM.pth to Save Memory)
|
| 280 |
-
# model_path = "models/CRM.pth"
|
| 281 |
-
# os.makedirs("models", exist_ok=True)
|
| 282 |
-
|
| 283 |
-
# if not os.path.exists(model_path):
|
| 284 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
| 285 |
-
# print(f"Downloading CRM.pth...")
|
| 286 |
-
# response = requests.get(url)
|
| 287 |
-
# with open(model_path, "wb") as f:
|
| 288 |
-
# f.write(response.content)
|
| 289 |
-
|
| 290 |
-
# # Set Device (Use CPU to Reduce RAM Usage)
|
| 291 |
-
# device = "cpu"
|
| 292 |
-
|
| 293 |
-
# # Load Model Efficiently
|
| 294 |
-
# def load_model():
|
| 295 |
-
# model = torch.load(model_path, map_location=device)
|
| 296 |
-
# if isinstance(model, torch.nn.Module):
|
| 297 |
-
# model.eval() # Ensure model is in inference mode
|
| 298 |
-
# return model
|
| 299 |
-
|
| 300 |
-
# # Load model only when needed (saves memory)
|
| 301 |
-
# model = load_model()
|
| 302 |
-
|
| 303 |
-
# # Define Inference Function with Memory Optimizations
|
| 304 |
-
# def infer(image):
|
| 305 |
-
# """Process input image and return a reconstructed image."""
|
| 306 |
-
# with torch.no_grad():
|
| 307 |
-
# # Convert image to torch tensor & normalize (float16 to save RAM)
|
| 308 |
-
# image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
|
| 309 |
-
# image_tensor = image_tensor.to(device)
|
| 310 |
-
|
| 311 |
-
# # Model Inference
|
| 312 |
-
# output = model(image_tensor)
|
| 313 |
-
|
| 314 |
-
# # Convert back to numpy image format
|
| 315 |
-
# output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0
|
| 316 |
-
# output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
| 317 |
-
|
| 318 |
-
# # Free Memory
|
| 319 |
-
# del image_tensor, output
|
| 320 |
-
# torch.cuda.empty_cache()
|
| 321 |
-
|
| 322 |
-
# return output_image
|
| 323 |
-
|
| 324 |
-
# # Create Gradio UI
|
| 325 |
-
# demo = gr.Interface(
|
| 326 |
-
# fn=infer,
|
| 327 |
-
# inputs=gr.Image(type="numpy"),
|
| 328 |
-
# outputs=gr.Image(type="numpy"),
|
| 329 |
-
# title="Optimized Convolutional Reconstruction Model",
|
| 330 |
-
# description="Upload an image to get the reconstructed output with reduced memory usage."
|
| 331 |
-
# )
|
| 332 |
-
|
| 333 |
-
# if __name__ == "__main__":
|
| 334 |
-
# demo.launch()
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
#############7tth################
|
| 339 |
-
# import torch
|
| 340 |
-
# import torch.nn as nn
|
| 341 |
-
# import gradio as gr
|
| 342 |
-
# import requests
|
| 343 |
-
# import os
|
| 344 |
-
# import torchvision.transforms as transforms
|
| 345 |
-
# import numpy as np
|
| 346 |
-
# from PIL import Image
|
| 347 |
-
|
| 348 |
-
# # Hugging Face Model Repository
|
| 349 |
-
# model_repo = "Mariam-Elz/CRM"
|
| 350 |
-
|
| 351 |
-
# # Model File Path
|
| 352 |
-
# model_path = "models/CRM.pth"
|
| 353 |
-
# os.makedirs("models", exist_ok=True)
|
| 354 |
-
|
| 355 |
-
# # Download model weights if not present
|
| 356 |
-
# if not os.path.exists(model_path):
|
| 357 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
| 358 |
-
# print(f"Downloading CRM.pth...")
|
| 359 |
-
# response = requests.get(url)
|
| 360 |
-
# with open(model_path, "wb") as f:
|
| 361 |
-
# f.write(response.content)
|
| 362 |
-
|
| 363 |
-
# # Set Device
|
| 364 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 365 |
-
|
| 366 |
-
# # Define Model Architecture (Replace with your actual model)
|
| 367 |
-
# class CRMModel(nn.Module):
|
| 368 |
-
# def __init__(self):
|
| 369 |
-
# super(CRMModel, self).__init__()
|
| 370 |
-
# self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
| 371 |
-
# self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
| 372 |
-
# self.relu = nn.ReLU()
|
| 373 |
-
|
| 374 |
-
# def forward(self, x):
|
| 375 |
-
# x = self.relu(self.conv1(x))
|
| 376 |
-
# x = self.relu(self.conv2(x))
|
| 377 |
-
# return x
|
| 378 |
-
|
| 379 |
-
# # Load Model
|
| 380 |
-
# def load_model():
|
| 381 |
-
# print("Loading model...")
|
| 382 |
-
# model = CRMModel() # Use the correct architecture here
|
| 383 |
-
# state_dict = torch.load(model_path, map_location=device)
|
| 384 |
-
|
| 385 |
-
# if isinstance(state_dict, dict): # Ensure it's a valid state_dict
|
| 386 |
-
# model.load_state_dict(state_dict)
|
| 387 |
-
# else:
|
| 388 |
-
# raise ValueError("Error: The loaded state_dict is not in the correct format.")
|
| 389 |
-
|
| 390 |
-
# model.to(device)
|
| 391 |
-
# model.eval()
|
| 392 |
-
# print("Model loaded successfully!")
|
| 393 |
-
# return model
|
| 394 |
-
|
| 395 |
-
# # Load the model
|
| 396 |
-
# model = load_model()
|
| 397 |
-
|
| 398 |
-
# # Define Inference Function
|
| 399 |
-
# def infer(image):
|
| 400 |
-
# """Process input image and return a reconstructed 3D output."""
|
| 401 |
-
# try:
|
| 402 |
-
# print("Preprocessing image...")
|
| 403 |
-
|
| 404 |
-
# # Convert image to PyTorch tensor & normalize
|
| 405 |
-
# transform = transforms.Compose([
|
| 406 |
-
# transforms.Resize((256, 256)), # Resize to fit model input
|
| 407 |
-
# transforms.ToTensor(), # Converts to tensor (C, H, W)
|
| 408 |
-
# transforms.Normalize(mean=[0.5], std=[0.5]), # Normalize
|
| 409 |
-
# ])
|
| 410 |
-
# image_tensor = transform(image).unsqueeze(0).to(device) # Add batch dimension
|
| 411 |
-
|
| 412 |
-
# print("Running inference...")
|
| 413 |
-
# with torch.no_grad():
|
| 414 |
-
# output = model(image_tensor) # Forward pass
|
| 415 |
-
|
| 416 |
-
# # Ensure output is a valid tensor
|
| 417 |
-
# if isinstance(output, torch.Tensor):
|
| 418 |
-
# output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 419 |
-
# output_image = np.clip(output_image * 255.0, 0, 255).astype(np.uint8)
|
| 420 |
-
# print("Inference complete! Returning output.")
|
| 421 |
-
# return output_image
|
| 422 |
-
# else:
|
| 423 |
-
# print("Error: Model output is not a tensor.")
|
| 424 |
-
# return None
|
| 425 |
-
|
| 426 |
-
# except Exception as e:
|
| 427 |
-
# print(f"Error during inference: {e}")
|
| 428 |
-
# return None
|
| 429 |
-
|
| 430 |
-
# # Create Gradio UI
|
| 431 |
-
# demo = gr.Interface(
|
| 432 |
-
# fn=infer,
|
| 433 |
-
# inputs=gr.Image(type="pil"),
|
| 434 |
-
# outputs=gr.Image(type="numpy"),
|
| 435 |
-
# title="Convolutional Reconstruction Model",
|
| 436 |
-
# description="Upload an image to get the reconstructed output."
|
| 437 |
-
# )
|
| 438 |
-
|
| 439 |
-
# if __name__ == "__main__":
|
| 440 |
-
# demo.launch()
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
# Not ready to use yet
|
| 446 |
import spaces
|
| 447 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Not ready to use yet
|
| 2 |
import spaces
|
| 3 |
import argparse
|