Spaces:
Runtime error
Runtime error
Upload imagedream/model_zoo.py with huggingface_hub
Browse files- imagedream/model_zoo.py +64 -64
imagedream/model_zoo.py
CHANGED
|
@@ -1,64 +1,64 @@
|
|
| 1 |
-
""" Utiliy functions to load pre-trained models more easily """
|
| 2 |
-
import os
|
| 3 |
-
import pkg_resources
|
| 4 |
-
from omegaconf import OmegaConf
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
from huggingface_hub import hf_hub_download
|
| 8 |
-
|
| 9 |
-
from imagedream.ldm.util import instantiate_from_config
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
PRETRAINED_MODELS = {
|
| 13 |
-
"sd-v2.1-base-4view-ipmv": {
|
| 14 |
-
"config": "sd_v2_base_ipmv.yaml",
|
| 15 |
-
"repo_id": "Peng-Wang/ImageDream",
|
| 16 |
-
"filename": "sd-v2.1-base-4view-ipmv.pt",
|
| 17 |
-
},
|
| 18 |
-
"sd-v2.1-base-4view-ipmv-local": {
|
| 19 |
-
"config": "sd_v2_base_ipmv_local.yaml",
|
| 20 |
-
"repo_id": "Peng-Wang/ImageDream",
|
| 21 |
-
"filename": "sd-v2.1-base-4view-ipmv-local.pt",
|
| 22 |
-
},
|
| 23 |
-
}
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def get_config_file(config_path):
|
| 27 |
-
cfg_file = pkg_resources.resource_filename(
|
| 28 |
-
"imagedream", os.path.join("configs", config_path)
|
| 29 |
-
)
|
| 30 |
-
if not os.path.exists(cfg_file):
|
| 31 |
-
raise RuntimeError(f"Config {config_path} not available!")
|
| 32 |
-
return cfg_file
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def build_model(model_name, config_path=None, ckpt_path=None, cache_dir=None):
|
| 36 |
-
if (config_path is not None) and (ckpt_path is not None):
|
| 37 |
-
config = OmegaConf.load(config_path)
|
| 38 |
-
model = instantiate_from_config(config.model)
|
| 39 |
-
model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
|
| 40 |
-
return model
|
| 41 |
-
|
| 42 |
-
if not model_name in PRETRAINED_MODELS:
|
| 43 |
-
raise RuntimeError(
|
| 44 |
-
f"Model name {model_name} is not a pre-trained model. Available models are:\n- "
|
| 45 |
-
+ "\n- ".join(PRETRAINED_MODELS.keys())
|
| 46 |
-
)
|
| 47 |
-
model_info = PRETRAINED_MODELS[model_name]
|
| 48 |
-
|
| 49 |
-
# Instiantiate the model
|
| 50 |
-
print(f"Loading model from config: {model_info['config']}")
|
| 51 |
-
config_file = get_config_file(model_info["config"])
|
| 52 |
-
config = OmegaConf.load(config_file)
|
| 53 |
-
model = instantiate_from_config(config.model)
|
| 54 |
-
|
| 55 |
-
# Load pre-trained checkpoint from huggingface
|
| 56 |
-
if not ckpt_path:
|
| 57 |
-
ckpt_path = hf_hub_download(
|
| 58 |
-
repo_id=model_info["repo_id"],
|
| 59 |
-
filename=model_info["filename"],
|
| 60 |
-
cache_dir=cache_dir,
|
| 61 |
-
)
|
| 62 |
-
print(f"Loading model from cache file: {ckpt_path}")
|
| 63 |
-
model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
|
| 64 |
-
return model
|
|
|
|
| 1 |
+
""" Utiliy functions to load pre-trained models more easily """
|
| 2 |
+
import os
|
| 3 |
+
import pkg_resources
|
| 4 |
+
from omegaconf import OmegaConf
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
from imagedream.ldm.util import instantiate_from_config
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
PRETRAINED_MODELS = {
|
| 13 |
+
"sd-v2.1-base-4view-ipmv": {
|
| 14 |
+
"config": "sd_v2_base_ipmv.yaml",
|
| 15 |
+
"repo_id": "Peng-Wang/ImageDream",
|
| 16 |
+
"filename": "sd-v2.1-base-4view-ipmv.pt",
|
| 17 |
+
},
|
| 18 |
+
"sd-v2.1-base-4view-ipmv-local": {
|
| 19 |
+
"config": "sd_v2_base_ipmv_local.yaml",
|
| 20 |
+
"repo_id": "Peng-Wang/ImageDream",
|
| 21 |
+
"filename": "sd-v2.1-base-4view-ipmv-local.pt",
|
| 22 |
+
},
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_config_file(config_path):
|
| 27 |
+
cfg_file = pkg_resources.resource_filename(
|
| 28 |
+
"imagedream", os.path.join("configs", config_path)
|
| 29 |
+
)
|
| 30 |
+
if not os.path.exists(cfg_file):
|
| 31 |
+
raise RuntimeError(f"Config {config_path} not available!")
|
| 32 |
+
return cfg_file
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def build_model(model_name, config_path=None, ckpt_path=None, cache_dir=None):
|
| 36 |
+
if (config_path is not None) and (ckpt_path is not None):
|
| 37 |
+
config = OmegaConf.load(config_path)
|
| 38 |
+
model = instantiate_from_config(config.model)
|
| 39 |
+
model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
|
| 40 |
+
return model
|
| 41 |
+
|
| 42 |
+
if not model_name in PRETRAINED_MODELS:
|
| 43 |
+
raise RuntimeError(
|
| 44 |
+
f"Model name {model_name} is not a pre-trained model. Available models are:\n- "
|
| 45 |
+
+ "\n- ".join(PRETRAINED_MODELS.keys())
|
| 46 |
+
)
|
| 47 |
+
model_info = PRETRAINED_MODELS[model_name]
|
| 48 |
+
|
| 49 |
+
# Instiantiate the model
|
| 50 |
+
print(f"Loading model from config: {model_info['config']}")
|
| 51 |
+
config_file = get_config_file(model_info["config"])
|
| 52 |
+
config = OmegaConf.load(config_file)
|
| 53 |
+
model = instantiate_from_config(config.model)
|
| 54 |
+
|
| 55 |
+
# Load pre-trained checkpoint from huggingface
|
| 56 |
+
if not ckpt_path:
|
| 57 |
+
ckpt_path = hf_hub_download(
|
| 58 |
+
repo_id=model_info["repo_id"],
|
| 59 |
+
filename=model_info["filename"],
|
| 60 |
+
cache_dir=cache_dir,
|
| 61 |
+
)
|
| 62 |
+
print(f"Loading model from cache file: {ckpt_path}")
|
| 63 |
+
model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
|
| 64 |
+
return model
|