Spaces:
Runtime error
Runtime error
Upload pipelines.py with huggingface_hub
Browse files- pipelines.py +170 -0
pipelines.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from libs.base_utils import do_resize_content
|
| 3 |
+
from imagedream.ldm.util import (
|
| 4 |
+
instantiate_from_config,
|
| 5 |
+
get_obj_from_str,
|
| 6 |
+
)
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class TwoStagePipeline(object):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
stage1_model_config,
|
| 16 |
+
stage2_model_config,
|
| 17 |
+
stage1_sampler_config,
|
| 18 |
+
stage2_sampler_config,
|
| 19 |
+
device="cuda",
|
| 20 |
+
dtype=torch.float16,
|
| 21 |
+
resize_rate=1,
|
| 22 |
+
) -> None:
|
| 23 |
+
"""
|
| 24 |
+
only for two stage generate process.
|
| 25 |
+
- the first stage was condition on single pixel image, gererate multi-view pixel image, based on the v2pp config
|
| 26 |
+
- the second stage was condition on multiview pixel image generated by the first stage, generate the final image, based on the stage2-test config
|
| 27 |
+
"""
|
| 28 |
+
self.resize_rate = resize_rate
|
| 29 |
+
|
| 30 |
+
self.stage1_model = instantiate_from_config(OmegaConf.load(stage1_model_config.config).model)
|
| 31 |
+
self.stage1_model.load_state_dict(torch.load(stage1_model_config.resume, map_location="cpu"), strict=False)
|
| 32 |
+
self.stage1_model = self.stage1_model.to(device).to(dtype)
|
| 33 |
+
|
| 34 |
+
self.stage2_model = instantiate_from_config(OmegaConf.load(stage2_model_config.config).model)
|
| 35 |
+
sd = torch.load(stage2_model_config.resume, map_location="cpu")
|
| 36 |
+
self.stage2_model.load_state_dict(sd, strict=False)
|
| 37 |
+
self.stage2_model = self.stage2_model.to(device).to(dtype)
|
| 38 |
+
|
| 39 |
+
self.stage1_model.device = device
|
| 40 |
+
self.stage2_model.device = device
|
| 41 |
+
self.device = device
|
| 42 |
+
self.dtype = dtype
|
| 43 |
+
self.stage1_sampler = get_obj_from_str(stage1_sampler_config.target)(
|
| 44 |
+
self.stage1_model, device=device, dtype=dtype, **stage1_sampler_config.params
|
| 45 |
+
)
|
| 46 |
+
self.stage2_sampler = get_obj_from_str(stage2_sampler_config.target)(
|
| 47 |
+
self.stage2_model, device=device, dtype=dtype, **stage2_sampler_config.params
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
def stage1_sample(
|
| 51 |
+
self,
|
| 52 |
+
pixel_img,
|
| 53 |
+
prompt="3D assets",
|
| 54 |
+
neg_texts="uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
|
| 55 |
+
step=50,
|
| 56 |
+
scale=5,
|
| 57 |
+
ddim_eta=0.0,
|
| 58 |
+
):
|
| 59 |
+
if type(pixel_img) == str:
|
| 60 |
+
pixel_img = Image.open(pixel_img)
|
| 61 |
+
|
| 62 |
+
if isinstance(pixel_img, Image.Image):
|
| 63 |
+
if pixel_img.mode == "RGBA":
|
| 64 |
+
background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
|
| 65 |
+
pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
|
| 66 |
+
else:
|
| 67 |
+
pixel_img = pixel_img.convert("RGB")
|
| 68 |
+
else:
|
| 69 |
+
raise
|
| 70 |
+
uc = self.stage1_sampler.model.get_learned_conditioning([neg_texts]).to(self.device)
|
| 71 |
+
stage1_images = self.stage1_sampler.i2i(
|
| 72 |
+
self.stage1_sampler.model,
|
| 73 |
+
self.stage1_sampler.size,
|
| 74 |
+
prompt,
|
| 75 |
+
uc=uc,
|
| 76 |
+
sampler=self.stage1_sampler.sampler,
|
| 77 |
+
ip=pixel_img,
|
| 78 |
+
step=step,
|
| 79 |
+
scale=scale,
|
| 80 |
+
batch_size=self.stage1_sampler.batch_size,
|
| 81 |
+
ddim_eta=ddim_eta,
|
| 82 |
+
dtype=self.stage1_sampler.dtype,
|
| 83 |
+
device=self.stage1_sampler.device,
|
| 84 |
+
camera=self.stage1_sampler.camera,
|
| 85 |
+
num_frames=self.stage1_sampler.num_frames,
|
| 86 |
+
pixel_control=(self.stage1_sampler.mode == "pixel"),
|
| 87 |
+
transform=self.stage1_sampler.image_transform,
|
| 88 |
+
offset_noise=self.stage1_sampler.offset_noise,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
stage1_images = [Image.fromarray(img) for img in stage1_images]
|
| 92 |
+
stage1_images.pop(self.stage1_sampler.ref_position)
|
| 93 |
+
return stage1_images
|
| 94 |
+
|
| 95 |
+
def stage2_sample(self, pixel_img, stage1_images, scale=5, step=50):
|
| 96 |
+
if type(pixel_img) == str:
|
| 97 |
+
pixel_img = Image.open(pixel_img)
|
| 98 |
+
|
| 99 |
+
if isinstance(pixel_img, Image.Image):
|
| 100 |
+
if pixel_img.mode == "RGBA":
|
| 101 |
+
background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
|
| 102 |
+
pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
|
| 103 |
+
else:
|
| 104 |
+
pixel_img = pixel_img.convert("RGB")
|
| 105 |
+
else:
|
| 106 |
+
raise
|
| 107 |
+
stage2_images = self.stage2_sampler.i2iStage2(
|
| 108 |
+
self.stage2_sampler.model,
|
| 109 |
+
self.stage2_sampler.size,
|
| 110 |
+
"3D assets",
|
| 111 |
+
self.stage2_sampler.uc,
|
| 112 |
+
self.stage2_sampler.sampler,
|
| 113 |
+
pixel_images=stage1_images,
|
| 114 |
+
ip=pixel_img,
|
| 115 |
+
step=step,
|
| 116 |
+
scale=scale,
|
| 117 |
+
batch_size=self.stage2_sampler.batch_size,
|
| 118 |
+
ddim_eta=0.0,
|
| 119 |
+
dtype=self.stage2_sampler.dtype,
|
| 120 |
+
device=self.stage2_sampler.device,
|
| 121 |
+
camera=self.stage2_sampler.camera,
|
| 122 |
+
num_frames=self.stage2_sampler.num_frames,
|
| 123 |
+
pixel_control=(self.stage2_sampler.mode == "pixel"),
|
| 124 |
+
transform=self.stage2_sampler.image_transform,
|
| 125 |
+
offset_noise=self.stage2_sampler.offset_noise,
|
| 126 |
+
)
|
| 127 |
+
stage2_images = [Image.fromarray(img) for img in stage2_images]
|
| 128 |
+
return stage2_images
|
| 129 |
+
|
| 130 |
+
def set_seed(self, seed):
|
| 131 |
+
self.stage1_sampler.seed = seed
|
| 132 |
+
self.stage2_sampler.seed = seed
|
| 133 |
+
|
| 134 |
+
def __call__(self, pixel_img, prompt="3D assets", scale=5, step=50):
|
| 135 |
+
pixel_img = do_resize_content(pixel_img, self.resize_rate)
|
| 136 |
+
stage1_images = self.stage1_sample(pixel_img, prompt, scale=scale, step=step)
|
| 137 |
+
stage2_images = self.stage2_sample(pixel_img, stage1_images, scale=scale, step=step)
|
| 138 |
+
|
| 139 |
+
return {
|
| 140 |
+
"ref_img": pixel_img,
|
| 141 |
+
"stage1_images": stage1_images,
|
| 142 |
+
"stage2_images": stage2_images,
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
|
| 148 |
+
stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
| 149 |
+
stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config
|
| 150 |
+
stage2_sampler_config = stage2_config.sampler
|
| 151 |
+
stage1_sampler_config = stage1_config.sampler
|
| 152 |
+
|
| 153 |
+
stage1_model_config = stage1_config.models
|
| 154 |
+
stage2_model_config = stage2_config.models
|
| 155 |
+
|
| 156 |
+
pipeline = TwoStagePipeline(
|
| 157 |
+
stage1_model_config,
|
| 158 |
+
stage2_model_config,
|
| 159 |
+
stage1_sampler_config,
|
| 160 |
+
stage2_sampler_config,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
img = Image.open("assets/astronaut.png")
|
| 164 |
+
rt_dict = pipeline(img)
|
| 165 |
+
stage1_images = rt_dict["stage1_images"]
|
| 166 |
+
stage2_images = rt_dict["stage2_images"]
|
| 167 |
+
np_imgs = np.concatenate(stage1_images, 1)
|
| 168 |
+
np_xyzs = np.concatenate(stage2_images, 1)
|
| 169 |
+
Image.fromarray(np_imgs).save("pixel_images.png")
|
| 170 |
+
Image.fromarray(np_xyzs).save("xyz_images.png")
|